...
首页> 外文期刊>Biogeochemistry >Redox and temperature-sensitive changes in microbial communities and soil chemistry dictate greenhouse gas loss from thawed permafrost
【24h】

Redox and temperature-sensitive changes in microbial communities and soil chemistry dictate greenhouse gas loss from thawed permafrost

机译:微生物社区和土壤化学中的氧化还原和温度敏感变化决定了从冻土冻土中的温室气体损失

获取原文
获取原文并翻译 | 示例
           

摘要

Greenhouse gas (GHG) emissions from thawed permafrost are difficult to predict because they result from complex interactions between abiotic drivers and multiple, often competing, microbial metabolic processes. Our objective was to characterize mechanisms controlling methane (CH4) and carbon dioxide (CO2) production from permafrost. We simulated permafrost thaw for the length of one growing season (90 days) in oxic and anoxic treatments at 1 and 15 A degrees C to stimulate aerobic and anaerobic respiration. We measured headspace CH4 and CO2 concentrations, as well as soil chemical and biological parameters (e.g. dissolved organic carbon (DOC) chemistry, microbial enzyme activity, N2O production, bacterial community structure), and applied an information theoretic approach and the Akaike information criterion to find the best explanation for mechanisms controlling GHG flux. In addition to temperature and redox status, CH4 production was explained by the relative abundance of methanogens, activity of non-methanogenic anaerobes, and substrate chemistry. Carbon dioxide production was explained by microbial community structure and chemistry of the DOC pool. We suggest that models of permafrost CO2 production are refined by a holistic view of the system, where the prokaryote community structure and detailed chemistry are considered. In contrast, although CH4 production is the result of many syntrophic interactions, these actions can be aggregated into a linear approach, where there is a single path of organic matter degradation and multiple conditions must be satisfied in order for methanogenesis to occur. This concept advances our mechanistic understanding of the processes governing anaerobic GHG flux, which is critical to understanding the impact the release of permafrost C will have on the global C cycle.
机译:解冻永久冻土的温室气体(GHG)排放很难预测,因为它们是非生物驱动因素和多种微生物代谢过程之间复杂相互作用的结果。我们的目标是描述控制永久冻土中甲烷(CH4)和二氧化碳(CO2)生成的机制。我们在1摄氏度和15摄氏度的有氧和缺氧条件下模拟了一个生长季(90天)的冻土融化,以刺激有氧和无氧呼吸。我们测量了顶空CH4和CO2浓度,以及土壤化学和生物参数(例如溶解有机碳(DOC)化学、微生物酶活性、N2O生成、细菌群落结构),并应用信息论方法和Akaike信息标准,找到控制温室气体通量机制的最佳解释。除了温度和氧化还原状态外,甲烷菌的相对丰度、非产甲烷厌氧菌的活性和底物化学也解释了CH4的产生。二氧化碳的产生是由微生物群落结构和DOC池的化学组成来解释的。我们建议,从系统的整体观点出发,考虑原核生物群落结构和详细的化学成分,对多年冻土二氧化碳生成的模型进行改进。相比之下,尽管CH4的产生是许多共营养相互作用的结果,但这些作用可以聚合为线性方法,其中有机物降解只有一条路径,并且必须满足多种条件才能发生产甲烷。这个概念推进了我们对控制厌氧GHG通量的过程的机械理解,这对于理解永久冻土C释放对全球C循环的影响至关重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号