首页> 美国卫生研究院文献>Proceedings of the National Academy of Sciences of the United States of America >Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production
【2h】

Changes in peat chemistry associated with permafrost thaw increase greenhouse gas production

机译:与多年冻土融化相关的泥炭化学变化增加了温室气体的产生

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Carbon release due to permafrost thaw represents a potentially major positive climate change feedback. The magnitude of carbon loss and the proportion lost as methane (CH4) vs. carbon dioxide (CO2) depend on factors including temperature, mobilization of previously frozen carbon, hydrology, and changes in organic matter chemistry associated with environmental responses to thaw. While the first three of these effects are relatively well understood, the effect of organic matter chemistry remains largely unstudied. To address this gap, we examined the biogeochemistry of peat and dissolved organic matter (DOM) along a ∼40-y permafrost thaw progression from recently- to fully thawed sites in Stordalen Mire (68.35°N, 19.05°E), a thawing peat plateau in northern Sweden. Thaw-induced subsidence and the resulting inundation along this progression led to succession in vegetation types accompanied by an evolution in organic matter chemistry. Peat C/N ratios decreased whereas humification rates increased, and DOM shifted toward lower molecular weight compounds with lower aromaticity, lower organic oxygen content, and more abundant microbially produced compounds. Corresponding changes in decomposition along this gradient included increasing CH4 and CO2 production potentials, higher relative CH4/CO2 ratios, and a shift in CH4 production pathway from CO2 reduction to acetate cleavage. These results imply that subsidence and thermokarst-associated increases in organic matter lability cause shifts in biogeochemical processes toward faster decomposition with an increasing proportion of carbon released as CH4. This impact of permafrost thaw on organic matter chemistry could intensify the predicted climate feedbacks of increasing temperatures, permafrost carbon mobilization, and hydrologic changes.
机译:多年冻土融化导致的碳释放代表了潜在的主要积极的气候变化反馈。碳损失的大小和甲烷(CH4)相对于二氧化碳(CO2)的损失比例取决于多种因素,包括温度,先前冻结的碳的迁移,水文学以及与融化的环境响应相关的有机物化学变化。尽管对这些效应中的前三个有相对较好的了解,但有机物化学的作用仍未得到充分研究。为了解决这个空白,我们研究了约40多年冻土融化过程中泥炭和溶解有机物(DOM)的生物地球化学,该过程从Stordalen Mire(68.35°N,19.05°E)融化的泥炭从最近融化到完全融化。瑞典北部高原。解冻引起的沉陷和沿该过程的淹没导致植被类型的演替,并伴随有机物化学的发展。泥炭的C / N比降低,而腐殖化速率提高,DOM向具有较低芳香性,较低有机氧含量和更丰富的微生物生产化合物的低分子量化合物转变。沿该梯度的相应分解变化包括增加的CH4和CO2产生潜能,较高的CH4 / CO2相对比率以及CH4产生途径从CO2还原到乙酸酯裂解的转变。这些结果表明,沉降和热岩溶相关的有机物不稳定性增加会导致生物地球化学过程向更快的分解方向转移,并释放出更多的以CH4形式释放的碳。多年冻土融化对有机物化学的影响可能会加剧温度升高,多年冻土碳迁移和水文变化的预期气候反馈。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号