首页> 外文期刊>Biotechnology and Bioengineering >In-silico media optimization for continuous cultures using genome scale metabolic networks: The case of CHO-K1
【24h】

In-silico media optimization for continuous cultures using genome scale metabolic networks: The case of CHO-K1

机译:使用基因组评估代谢网络的连续培养物中的硅培养基优化:CHO-K1的情况

获取原文
获取原文并翻译 | 示例
           

摘要

The cell culture is the central piece of a biotechnological industrial process. It includes upstream (e.g. media preparation, fixed costs, etc.) and downstream steps (e.g. product purification, waste disposal, etc.). In the continuous mode of cell culture, a constant flow of fresh media replaces culture fluid until the system reaches a steady state. This steady state is the standard operation mode which, under very general conditions, is a function of the ratio between the cell density and the dilution rate and depends on the media supplied to the culture. To optimize the production process it is widely accepted that the concentration of the metabolites in this media should be carefully tuned. A poor media may not provide enough nutrients to the culture, while a media too rich in nutrients may be a waste of resources because, either the cells do not use all of the available nutrients, or worse, they over-consume them producing toxic byproducts. In this study, we show how an in-silico study of a genome scale metabolic network coupled to the dynamics of a chemostat could guide the strategy to optimize the media to be used in a continuous process. Given a known media we model the concentrations of the cells in a chemostat as a function of the dilution rate. Then, we cast the problem of optimizing the production process within a linear programming framework in which the goal is to minimize the cost of the media keeping fixed the cell concentration for a given dilution rate in the chemostat. We evaluate our results in two metabolic models: first a simplified model of mammalian cell metabolism, and then in a realistic genome-scale metabolic network of mammalian cells, the Chinese hamster ovary cell line. We explore the latter in more detail given specific meaning to the predictions of the concentrations of several metabolites.
机译:细胞培养是生物技术工业过程的中央部件。它包括上游(例如媒体准备,固定成本等)和下游步骤(例如产品纯化,废物处理等)。在连续模式的细胞培养模式中,新鲜介质的恒定流动取代培养液,直到系统达到稳定状态。这种稳态是标准操作模式,其在非常一般的条件下是细胞密度与稀释率之间的比率,并且取决于提供给培养物的介质。为了优化生产过程,众所周度地接受了该介质中代谢物的浓度应仔细调整。较差的介质可能无法为培养提供足够的营养素,而培养物的培养基也可能是浪费资源,因为细胞不使用所有可用的营养素或更差,它们过度消耗它们产生有毒副产品。在这项研究中,我们展示了如何在耦合到化疗仪的动态的基因组标量代谢网络的硅基研究的研究可以指导策略优化在连续过程中使用的介质。鉴于已知介质,我们根据稀释率的函数模拟ChemoStat中细胞的浓度。然后,我们施放了在线性编程框架内优化生产过程的问题,其中目标是最小化介质的成本保持固定在化学稳定液中给定稀释率的细胞浓度。我们评估了两种代谢模型的结果:首先是哺乳动物细胞新陈代谢的简化模型,然后在哺乳动物细胞的现实基因组代谢网络中,中国仓鼠卵巢细胞系。对于预测若干代谢物的浓度的预测,我们更详细地探讨了后者。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号