...
首页> 外文期刊>Biotechnology and Bioengineering >Effect of Oxygen on the Per-Cell Extracellular Electron Transfer Rate of Shewanella oneidensis MR-1 Explored in Bioelectrochemical Systems
【24h】

Effect of Oxygen on the Per-Cell Extracellular Electron Transfer Rate of Shewanella oneidensis MR-1 Explored in Bioelectrochemical Systems

机译:氧对生物电化学系统勘探的肺肾上腺素二世MR-1全胞细胞外传递率的影响

获取原文
获取原文并翻译 | 示例

摘要

Extracellular electron transfer (EET) is a mechanism that enables microbes to respire solid-phase electron acceptors. These EET reactions most often occur in the absence of oxygen, since oxygen can act as a competitive electron acceptor for many facultative microbes. However, for Shewanella oneidensis MR-1, oxygen may increase biomass development, which could result in an overall increase in EET activity. Here, we studied the effect of oxygen on S. oneidensis MR-1 EET rates using bioelectrochemical systems (BESs). We utilized optically accessible BESs to monitor real-time biomass growth, and studied the per-cell EET rate as a function of oxygen and riboflavin concentrations in BESs of different design and operational conditions. Our results show that oxygen exposure promotes biomass development on the electrode, but significantly impairs per-cell EET rates even though current production does not always decrease with oxygen exposure. Additionally, our results indicated that oxygen can affect the role of riboflavin in EET. Under anaerobic conditions, both current density and per-cell EET rate increase with the riboflavin concentration. However, as the dissolved oxygen (DO) value increased to 0.42 mg/L, riboflavin showed very limited enhancement on per-cell EET rate and current generation. Since it is known that oxygen can promote flavins secretion in S. oneidensis, the role of riboflavin may change under anaerobic and aerobic conditions. (C) 2016 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
机译:细胞外电子转移(EET)是一种使微生物能够呼吸固相电子受体的机制。这些EET反应最常发生在没有氧气的情况下,因为氧可以作为许多兼容性微生物作为竞争性电子受体。然而,对于沉萘二世MR-1,氧气可能会增加生物量发育,这可能导致EET活性的总体增加。在这里,我们使用生物电化学系统(BESS)研究了氧气对S. onidensis MR-1 EET速率的影响。我们利用光学偏离的BESS来监测实时生物质生长,并在不同设计和操作条件下,作为氧气和核黄素浓度的函数研究了每种细胞EET率。我们的研究结果表明,氧气暴露促进电极上的生物质发育,但即使目前的产量并不总是随着氧气暴露而减少的情况,即使目前的产量并不总是降低,均显着损害了每种细胞EET速率。此外,我们的结果表明氧气会影响核黄素在EET中的作用。在厌氧条件下,随着核黄素浓度的增加,电流密度和每种细胞EET速率增加。然而,随着溶解的氧(DO)值增加至0.42mg / L,核黄素对每种细胞EET率和电流产生的增强非常有限。由于众所周知,氧气可以促进S.Inidensis中的黄曲生物分泌,因此核黄素在厌氧和好氧条件下可能发生变化。 (c)2016年作者。 Wiley Hearyicals,Inc。出版的生物技术和生物工程

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号