首页> 外文期刊>Biosystems Engineering >Multi-sensor measurement of O-2, CO2 and reheating in triticale silage: An extended approach from aerobic stability to aerobic microbial respiration
【24h】

Multi-sensor measurement of O-2, CO2 and reheating in triticale silage: An extended approach from aerobic stability to aerobic microbial respiration

机译:O-2,CO2的多传感器测量,并在小黑色的青贮中再加热:从有氧稳定性到有氧微生物呼吸的扩展方法

获取原文
获取原文并翻译 | 示例
           

摘要

The biochemical reactions of aerobic microbial respiration (AMR) suggest that silage temperature (T-si) rise, oxygen (O-2) consumption and carbon dioxide (CO2) emission may be equally useful as indicators of silage deterioration during feed-out, but only temperature has been used extensively to assess aerobic stability. Here we extend the study of aerobic stability to incorporate AMR of silage by developing a novel experimental cell integrated with multiple sensors. Silage samples, ensiled from a triticale crop, were made in twelve air-tight barrels (60 L), packed to bulk densities of 190 or 250 kgm(-3) dry matter (DM). T-si and O-2 measurements were co-located at 15- and 30-cm behind the working face. CO2 was measured as flux across the working face. The experimental period of aerobic exposure was 7 days. We provide the first reports of: (i) distinct aerobic responses of these parameters, showing that T-si varied with CO2 in phase but with O-2 out-of phase; (ii) CO2 flux was dominated initially by anaerobic discharge and subsequently by aerobic products; (iii) linear relationships between aerobic reheating and both O-2 consumption (0.994 >= R-2 >= 0.815, P < 0.01) and CO2 flux (0.981 >= R-2 >= 0.464, P < 0.01); and (iv) variable magnitude of daily aerobic production of CO2 per kg DM from 2.3 to 133.4 mmol kg d(-1). These results demonstrate that the novel multi-sensor technique has powerful capacity to provide insight into AMR of silage and thus provide more detailed information to guide silage management than previous measurements of aerobic stability. (C) 2021 IAgrE. Published by Elsevier Ltd. All rights reserved.
机译:有氧微生物呼吸(AMR)的生化反应表明,青贮饲料温度(T-Si)升高,氧气(O-2)消耗和二氧化碳(二氧化碳)排放可能同样可用作饲料期间的青贮衰退的指标,但是仅限温度广泛用于评估有氧稳定性。在这里,我们通过开发与多个传感器集成的新型实验细胞来延长有氧稳定性的研究。在一个小拇指(60L)中,从一个小黑麦作物中进行青贮样,填充为190或250kgm(-3)干物质(DM)的散装密度。 T-Si和O-2测量分配在工作面后15厘米处。 CO2被测量为整个工作面的助焊剂。有氧暴露的实验期为7天。我们提供的第一个报告:(i)这些参数的明显有氧响应,表明T-Si在阶段同时使用CO 2而变化,但与O-2外相; (ii)二氧化碳助焊剂最初通过厌氧放电和随后通过有氧产品来支配; (iii)有氧再加热与O-2消耗(0.994> = R-2> = 0.815,P <0.01)和CO 2通量(0.981> = R-2> = 0.464,P <0.01)之间的线性关系; (iv)每日有氧生产的可变幅度为每千克DM的二氧化碳,从2.3〜133.4 mmol kg d(-1)。这些结果表明,新型多传感器技术具有强大的能力,可以提供对青贮饲料的洞察力的洞察力,从而提供更详细的信息来指导比以前的有氧稳定性测量的青贮效应。 (c)2021 IAGRE。 elsevier有限公司出版。保留所有权利。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号