...
首页> 外文期刊>Biochemical Engineering Journal >In silico analysis of synthetic multispecies biofilms for cellobiose-to-isobutanol conversion reveals design principles for stable and productive communities
【24h】

In silico analysis of synthetic multispecies biofilms for cellobiose-to-isobutanol conversion reveals design principles for stable and productive communities

机译:在纤维二烷基硫代丁醇转化的合成多边形生物膜的硅分析中,揭示了稳定和生产社区的设计原则

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Efficient, large-scale conversion of plant-derived feedstocks to commodity chemicals remains a substantial technological challenge with enormous potential for societal benefits. Most research efforts have focused on metabolic engineering of model organisms for planktonic cell cultures in well-mixed suspension bioreactors. We utilized in silico metabolic modeling to explore the potential benefits of an alternative design strategy based on combining bacterial strains with complementary metabolic functions within high density, multispecies biofilms. We simulated four alternative system designs, each of which consisted of an anaerobic cellulolytic bacterium which degraded cellobiose to glucose, an aerobic Escherichia coli strain engineered for glucose-to-isobutanol conversion, and an aerobic or anaerobic byproduct consumer for metabolizing growth-inhibiting organic acids such as acetate secreted by the other two strains. Our simulations predicted dramatically different cellobiose-toisobutanol conversion capabilities depending on the metabolic compatibility of the three bacteria. Important design considerations included glucose competition between the cellulolytic and isobutanol-producing bacteria, O-2 competition between the isobutanol-producing and byproduct-consuming bacteria, organic acid matching between the cellulolytic and byproduct-consuming bacteria and the degree of metabolic redundancy between the community members. We believe that these design principles will be widely applicable to synthetic biofilm communities engineered to perform other bioconversion tasks.
机译:高效,植物衍生的原料转化为商品化学品的大规模转化仍然是具有巨大的社会效益潜力的实质性技术挑战。大多数研究努力都集中在孔混合悬浮生物反应器中的浮游细胞培养物模型生物的代谢工程。我们利用Silico代谢模型,探讨了基于细菌菌株的互补代谢功能在高密度,多层生物膜内的细菌菌株组合的替代设计策略的潜在益处。我们模拟了四种替代系统设计,其中每种替代系统设计包括一种厌氧纤维素分解细菌,该细菌降解纤维素至葡萄糖,是一种用于葡萄糖 - 异丁醇转化的有氧的大肠杆菌菌株,以及用于代谢生长抑制的有机酸的有氧或厌氧副产物消费者如乙酸盐被另外两个菌株分泌。我们的模拟根据三种细菌的代谢兼容性,从大众化的纤维二脱脂醛醇转化能力预测。重要的设计考虑因素包括纤维素溶解和异丁醇产生的细菌之间的葡萄糖竞争,在异丁醇生产和副产品饮食细菌之间的O-2竞争,纤维素分解与副产品的细菌之间的有机酸匹配以及社区之间的代谢冗余程度会员。我们认为,这些设计原则将广泛适用于工程化的合成生物膜社区,以执行其他生物转化任务。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号