首页> 外文期刊>International journal of engine research >Variable valve actuation-based combustion control strategies for efficiency improvement and emissions control in a heavy-duty diesel engine
【24h】

Variable valve actuation-based combustion control strategies for efficiency improvement and emissions control in a heavy-duty diesel engine

机译:基于可变的阀驱动的燃烧控制策略,用于重型柴油发动机效率提升和排放控制

获取原文
获取原文并翻译 | 示例
       

摘要

High nitrogen oxide levels of the conventional diesel engine combustion often requires the introduction of exhaust gas recirculation at high engine loads. This can adversely affect the smoke emissions and fuel conversion efficiency associated with a reduction of the in-cylinder air-fuel ratio (lambda). In addition, low exhaust gas temperatures at low engine loads reduce the effectiveness of aftertreatment systems necessary to meet stringent emissions regulations. These are some of the main issues encountered by current heady-duty diesel engines. In this work, variable valve actuation-based advanced combustion control strategies have been researched as means of improving upon the engine exhaust temperature, emissions, and efficiency. Experimental analysis was carried out on a single-cylinder heady-duty diesel engine equipped with a high-pressure common-rail fuel injection system, a high-pressure loop cooled exhaust gas recirculation, and a variable valve actuation system. The variable valve actuation system enables a late intake valve closing and a second intake valve opening during the exhaust stroke. The results showed that Miller cycle was an effective technology for exhaust temperature management of low engine load operations, increasing the exhaust gas temperature by 40 degrees C and 75 degrees C when running engine at 2.2 and 6 bar net indicated mean effective pressure, respectively. However, Miller cycle adversely effected carbon monoxide and unburned hydrocarbon emissions at a light load of 2.2 bar indicated mean effective pressure. This could be overcome when combining Miller cycle with a second intake valve opening strategy due to the formation of a relatively hotter in-cylinder charge induced by the presence of internal exhaust gas recirculation. This strategy also led to a significant reduction in soot emissions by 82% when compared with the baseline engine operation. Alternatively, the use of external exhaust gas recirculation and post injection on a Miller cycle operation decreased high nitrogen oxide emissions by 67% at a part load of 6 bar indicated mean effective pressure. This contributed to a reduction of 2.2% in the total fluid consumption, which takes into account the urea consumption in aftertreatment system. At a high engine load of 17 bar indicated mean effective pressure, a highly boosted Miller cycle strategy with exhaust gas recirculation increased the fuel conversion efficiency by 1.5% while reducing the total fluid consumption by 5.4%. The overall results demonstrated that advanced variable valve actuation-based combustion control strategies can control the exhaust gas temperature and engine-out emissions at low engine loads as well as improve upon the fuel conversion efficiency and total fluid consumption at high engine loads, potentially reducing the engine operational costs.
机译:传统的柴油发动机燃烧的高氧化物水平通常需要在高发动机负载下引入废气再循环。这可能会对与缸内空燃比(Lambda)的降低相关的烟雾排放和燃料转换效率产生不利影响。此外,低发动机负荷下的低气气温降低了满足严格排放法规所需的后处理系统的有效性。这些是当前招聘柴油发动机遇到的一些主要问题。在这项工作中,可变阀驱动的先进燃烧控制策略已被研究为改善发动机排气温度,排放和效率的手段。在配备有高压共轨燃料喷射系统,高压回路冷却废气再循环和可变阀致动系统的单缸膝关节柴油发动机上进行了实验分析。可变阀致动系统使得在排气冲程期间能够延迟进气门闭合和第二进气门开口。结果表明,米勒循环是低发动机负荷操作的降温管理的有效技术,当运行发动机时,在2.2和6巴净的净值的平均有效压力下,将排气温度增加40℃和75摄氏度。然而,米勒循环在2.2巴的光负载下不利地产生一氧化碳和未燃烧的烃排放,表示平均有效压力。在将米勒循环与第二进气门开度策略结合时,可以克服这一点,因为由于内部废气再循环的存在诱导的相对较热的圆柱电荷而形成。与基线发动机操作相比,该策略也导致烟灰排放量大减少了82%。或者,使用外部排气再循环和在米循环操作上的后注射在6巴的部件负载下通过67%的高氧化物排放量降低了67%,表示平均有效压力。这导致总流体消耗量的减少2.2%,这考虑了后处理系统中的尿素消耗。在17巴的高发动机负载下表示平均有效压力,具有废气再循环的高压铣床策略将燃料转换效率提高1.5%,同时将总流体消耗降低5.4%。总体结果表明,基于先进的可变阀致动的燃烧控制策略可以控制低发动机负荷下的废气温度和发动机排放,以及提高燃料转换效率和高发动机负荷的总流体消耗,可能降低了发动机运营成本。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号