首页> 外文期刊>Aquaculture >Synchronizing use of sophisticated wet-laboratory and in-field handheld technologies for real-time monitoring of key microalgae, bacteria and physicochemical parameters influencing efficacy of water quality in a freshwater aquaculture recirculation system: A case study from the Republic of Ireland
【24h】

Synchronizing use of sophisticated wet-laboratory and in-field handheld technologies for real-time monitoring of key microalgae, bacteria and physicochemical parameters influencing efficacy of water quality in a freshwater aquaculture recirculation system: A case study from the Republic of Ireland

机译:同步使用复杂的湿法实验室和现场手持技术,用于实时监测关键微藻,细菌和物理化学参数,影响淡水水产养殖再循环系统中水质的功效:爱尔兰共和国的案例研究

获取原文
获取原文并翻译 | 示例
       

摘要

There has been growing interest in exploiting microalgae as a natural process for low cost wastewater treatment and for water quality control and remediation in aquaculture. This constitutes the first study to report on a strong relationship between use of sophisticated wet-laboratory flow cytometry equipment and in-field AlgaeTorch (R) technologies for determining microalgae and bacteria population dynamics in a freshwater pill-pond aquaculture farm over a 10-month monitoring period producing Eurasian Perch, Perca fluviatilis, in the Republic of Ireland. Nitrate levels and temperature were the most significant factors influencing microalgae numbers in rearing and treatment ponds as determined by Principle Component Analysis. Variance in climate, namely drought conditions that occurred during monitoring period, did not affect microalgae or microbial numbers. Chlorophyta, Bacillariophyta and Cryptophyta were the most dominant algal divisions observed in this recirculating aquaculture system, many of these are recognized as a natural source of beneficial prebiotics for fish. Determining baseline microalgal profiles in rearing water, followed by elucidating physicochemical parameters governing wastewater treatment performance, can inform future intensification and diversification of freshwater aquaculture by exploiting and replicating knowledge of favourable algal-microbial ecosystems. Furthermore, holistic datasets can be utilised for smart agriculture by way of informing management tools for future remote monitoring and decision-making by producers.
机译:对利用微藻作为低成本废水处理和水质控制和水产养殖中的修复的自然过程,兴趣越来越感兴趣。这构成了第一次报告使用复杂的湿法样式细胞计量设备和现场藻类(R)技术在淡水丸 - 池塘水产养殖农场中测定微藻和细菌种群动态之间的良好关系的研究。在10个月内在爱尔兰共和国生产欧亚鲈鱼的监测期欧洲鲈鱼。硝酸盐水平和温度是影响饲养和治疗池中的微藻数的最重要因素,如原则成分分析所确定的。气候的差异,即监测期间发生的干旱条件,不影响微藻或微生物数。叶绿素,杆菌病和Cryptophyta是在该循环水产养殖系统中观察到的最占主导地位的藻类,其中许多被认为是鱼类有益益生菌的自然来源。确定饲养水中基线微藻曲线,然后阐明治疗废​​水处理性能的物理化学参数,可以通过利用和复制对藻类微生物生态系统的知识来告知未来的淡水水产养殖的增长和多样化。此外,整体数据集可以通过通知管理工具以供未来的远程监控和由生产者决策的方式用于智能农业。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号