...
首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Modeling and optimization of gaseous helium (GHe) cooled high temperature superconducting (HTS) DC cables for high power density transmission
【24h】

Modeling and optimization of gaseous helium (GHe) cooled high temperature superconducting (HTS) DC cables for high power density transmission

机译:气态氦气(GHE)冷却高温超导(HTS)DC电缆的建模与优化,高功率密度传输

获取原文
获取原文并翻译 | 示例
           

摘要

Superconducting cables are considered a viable technology to meet the increasing global demand of electricity transmission and distribution. This paper presents a transient mathematical model to predict the thermal response of a superconducting cable contained in a flexible cryostat. The model was conceived to be computationally fast so that system response according to variations of physical properties of the materials, and operating and design parameters could be assessed for optimization purposes. A volume element method (VEM) was utilized, which resulted in a system of ordinary differential equations with time as the independent variable. The model is also space dependent, through the establishment of a mesh with a known three-dimensional distribution of the volume elements in the computational domain. Pressure drop in the gas channels and the temperature gradient with respect to space in the flow direction were taken into account. The numerically calculated DC cable heat leak rate under different environmental conditions was initially adjusted and then experimentally validated by direct comparison to actual experimental data. The final part of the study consisted of using the experimentally validated model to perform the DC cable design and operating parameters optimization in order to obtain minimum heat leak rate and pumping power (or total consumed power). By adopting a fixed cable cross sectional area constraint (or total volume for a given length), an optimized helium channels geometry is also found that shows significant improvement in system performance in comparison to an existing system geometry. For example, for a GHe mass flow rate of 3.8 g s(-1), the cryostat with the original geometry is shown to consume 20.5% more power than with the optimized geometry. As a result, it is reasonable to state that the combination of accuracy and low computational time allow for the future utilization of the model as a reliable tool for HTS DC cable & cryostat simulation, control, design and optimization purposes.
机译:超导电缆被认为是可行的技术,以满足越来越多的电力传输和分布需求。本文呈现瞬态数学模型,以预测柔性低温恒温器中包含的超导电缆的热响应。该模型被认为是快速计算的,以便根据材料的物理性质的变化和操作和设计参数来评估系统响应以进行优化目的。利用了体积元素方法(VEM),从而导致具有随时间变量的常微分方程系统。该模型也是依赖于空间,通过建立网格,其具有计算域中的卷元素的已知三维分布。考虑了气体通道中的压降和相对于流动方向上的空间的温度梯度。最初调整了不同环境条件下的数值计算的直流电缆热泄漏率,然后通过与实际实验数据直接比较进行实验验证。该研究的最后一部分包括使用实验验证的模型来执行DC电缆设计和操作参数优化,以获得最小的散热速率和泵送电源(或总消耗功率)。通过采用固定电缆横截面积(或给定长度的总体积),还发现优化的氦气通道几何形状,其显示与现有系统几何形状相比的系统性能的显着改善。例如,对于3.8g S(-1)的GHE质量流量,具有原始几何形状的低温恒温器被示出比优化的几何形状消耗20.5%。因此,说明精度和低计算时间的组合是合理的,允许将模型的未来利用作为HTS DC电缆和低温仪模拟,控制,设计和优化目的的可靠工具。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号