首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Geometry and nanoparticle loading effects on the bio-based nano-PCM filled cylindrical thermal energy storage system
【24h】

Geometry and nanoparticle loading effects on the bio-based nano-PCM filled cylindrical thermal energy storage system

机译:几何和纳米颗粒对生物基纳米PCM填充圆柱热能存储系统的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Dispersing highly conductive nanoparticles into a Phase Change Material (PCM) is one the effective methods to increase thermal conductivity and decrease the required time for phase change in thermal energy storage systems. The current work reports an experimental effort to investigate the detailed melting process of a nano-PCM inside a Cylindrical Thermal Energy Storage (C-TES) system. The experimental setup consists of two vertical C-TES systems and a constant temperature bath. One of the C-TES systems is filled with a bio-based pure PCM (coconut oil) and the second one is filled with a nano-PCM (CuO nanoparticles dispersed in coconut oil PCM). The objective of this study is to investigate the effects of (i) height of the PCM, (ii) temperature of the hot wall, and (iii) weight fractions of nanoparticles on the melting of nano-PCM. The thermophysical properties of nano-PCM are measured and reported in this paper. Digital images of melting front and temperatures at selected locations are captured at three pre-selected boundary temperatures and four weight fractions of nanoparticles and presented. Image processing of photographs along with numerical integration is used to calculate melt fraction. To facilitate a better comparison of melting pattern between bio-based PCM and nano-PCM, solid liquid interface is presented on the XY plots. Results show that at the beginning of the melting process, pure PCM and nano-PCM behave almost the same, however, with an ongoing heating process, nano-PCMs melt faster than pure PCM. The height of the PCM and hot wall temperature affect the melting pattern and melting time, respectively. An extensive analysis is reported as well to show how to calculate the uncertainty associated with image based melt fraction calculation.
机译:将高导电纳米颗粒分散到相变材料(PCM)中是增加导热率的有效方法,并降低热能储存系统中的相变的所需时间。目前的工作报告了一种实验努力来研究圆柱形热能存储(C-TES)系统内的纳米PCM的详细熔化过程。实验装置由两个垂直的C-TES系统和恒温浴组成。其中一个C-TES系统充满了基于生物的纯PCM(椰子油),第二个C-TES系统填充有纳米PCM(CuO纳米粒子分散在椰子油PCM中)。本研究的目的是研究(I)PCM,(II)温度的效果,热壁的温度,(III)纳米颗粒的重量分数对纳米PCM的熔化。本文测量并报道了纳米PCM的热理性质。在三个预选的边界温度和四个纳米颗粒的四个重量分数中捕获所选地点的熔化前面和温度的数字图像。使用图像处理以及数值集成的图像处理来计算熔体分数。为了便于更好地比较生物基PCM和纳米PCM之间的熔化模式,在XY图上呈现实体液体界面。结果表明,在熔化过程开始时,纯PCM和纳米PCM的行为几乎相同,然而,随着持续的加热过程,纳米PCM熔融比纯PCM更快。 PCM和热壁温度的高度分别影响熔化的图案和熔化时间。报告了广泛的分析,展示了如何计算与基于图像的熔体分数计算相关的不确定性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号