首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Thermo-mechanical analysis and estimation of turbine blade tip clearance of a small gas turbine engine under transient operating conditions
【24h】

Thermo-mechanical analysis and estimation of turbine blade tip clearance of a small gas turbine engine under transient operating conditions

机译:瞬态操作条件下小型燃气涡轮发动机涡轮叶片尖端清除的热力学分析及估计

获取原文
获取原文并翻译 | 示例
           

摘要

Turbine blade tip clearance is one of the significant factors that influence turbine efficiency, Specific Fuel Consumption (SFC), Exhaust Gas Temperature (EGT), and emissions. Controlling these parameters in a small gas turbine engine (SGT) is a challenging task due to small blade height and viscous working environment. SGT are subjected to high-temperature gradients at the combustor outlet, which affects the turbine blade tip clearance. This paper presents the thermo-mechanical analysis of a typical SGT engine to study the blade tip clearance influenced by the deformation of turbine stage components (turbine rotor, nozzle guide vane (NGV) with integral blade shroud) during transient phases. ANSYS Workbench is used to perform transient thermal and structural analyses. The structural analysis is performed taking the material properties to be temperature-dependent. The SGT engine under consideration operates at a design speed of 45,000 rpm. Initially, steady-state thermal analysis and static structural analysis were carried out to understand the structural behaviour of the system under a thermal and centrifugal loading environment. Since different components of the engine assembly operate at different temperatures, the effects of convection and conduction at the interfaces influence the radial clearances between the static and rotating parts of the engine. A one-way coupled transient thermal-structural analysis was performed on a three-dimensional model to capture the actual behaviour of the tip clearance during transient operating conditions. Significant growth of blade and rotor was observed relative to the casing resulting in minimal clearances during these transient operations. Hence, it is important to estimate desired cold clearance, considering transient phenomena, to avoid mechanical blade rub with the shroud. It is observed that high-temperature gradients contribute primarily to the stresses and radial displacement of the rotor compared to centrifugal effects. The turbine rotor takes more time (t = 600 s) to reach steady-state temperatures compared to NGV (t = 120 s) due to the solid mass of the disc. The location and magnitude of maximum and minimum equivalent stress changes with time in NGV and rotor, and they experience maximum stress at the initial time steps compared to steady-state.
机译:涡轮叶片尖端间隙是影响涡轮机效率,特定燃料消耗(SFC),废气温度(EGT)和排放的重要因素之一。控制在小型燃气涡轮发动机(SGT)中的这些参数是由于小叶片高度和粘性工作环境的具有挑战性的任务。 SGT在燃烧器出口处经过高温梯度,影响涡轮机叶片尖端间隙。本文介绍了典型的SGT发动机的热力学分析,以研究瞬态阶段的涡轮台部件(涡轮转子,喷嘴引导叶片(NGV)变形的叶片尖端间隙。 ANSYS Workbench用于执行瞬态热和结构分析。进行结构分析,将材料特性置于温度依赖性。正在考虑的SGT发动机以45,000 rpm的设计速度运行。首先,进行稳态热分析和静态结构分析,以了解热和离心负载环境下系统的结构行为。由于发动机组件的不同部件在不同的温度下操作,因此对流对流和传导在接口处的影响影响了发动机的静态和旋转部分之间的径向间隙。对三维模型进行单向耦合瞬态热结构分析,以捕获瞬态操作条件期间尖端间隙的实际行为。相对于壳体观察到刀片和转子的显着增长,从而导致这些瞬态操作期间的最小间隙。因此,重要的是要考虑瞬态现象,估计所需的冷冻空间,以避免机械刀片用护罩擦拭。观察到,与离心效应相比,高温梯度主要贡献转子的应力和径向位移。由于盘的固体质量,涡轮转子需要更多时间(T = 600秒)以达到与NGV(T = 120s)相比的稳态温度。在NGV和转子中,最大和最小等效应力的位置和大小随时间而变化,并且与稳态相比,它们在初始时间步长体验最大应力。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号