首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >A novel semi-analytical solution for calculating the temperature distribution of the lithium-ion batteries during nail penetration based on Green's function method
【24h】

A novel semi-analytical solution for calculating the temperature distribution of the lithium-ion batteries during nail penetration based on Green's function method

机译:一种新型半分析解决方案,用于基于绿色函数法计算钉渗透期间锂离子电池的温度分布

获取原文
获取原文并翻译 | 示例
           

摘要

Lithium-ion batteries are now becoming the primary energy storage device for electric vehicles. However, thermal runaway caused by the internal short circuit in lithium-ion batteries draws attention to the safety issues. The dramatic temperature change of lithium-ion batteries can lead to fatal accidents. This paper aims to find a better way to estimate the lithium-ion batteries' temperature distribution under the nail penetration condition. Then a semi-analytical solution based on Green's function is derived at three different punching positions. A three-dimensional battery model is constructed by utilizing COMSOL Multiphysics software to simulate the characteristics of temperature distribution's variation. The results show that the temperature distribution is related to the nail penetration position. When the punching position is near to the positive electrode of the battery, the temperature can reach the highest value compared with the other two nail penetration positions, the middle of the battery and the position that is far from the positive electrode. In addition, the simulation results are compared with the temperature curve drawn by solving the semi-analytical solution. It shows that these temperature curves follow a similar trend, and the difference between the simulation results and the semi-analytical solution is small with an error less than 5%.
机译:锂离子电池现在正在成为电动车辆的主要能量存储装置。然而,由锂离子电池内部短路引起的热失控引起了安全问题的关注。锂离子电池的剧烈温度变化会导致致命事故。本文旨在找到一种更好的方法来估计指甲渗透条件下的锂离子电池的温度分布。然后,基于绿色函数的半分析解决方案衍生在三种不同的冲压位置。通过利用COMSOL MultiphySics软件来模拟温度分布变化的特性来构建三维电池型号。结果表明,温度分布与指甲渗透位置有关。当冲孔位置靠近电池的正极时,与其他两个指甲穿透位置相比,温度可以达到最高值,电池的中间和远离正电极的位置。此外,将模拟结果与通过求解半分析溶液的温度曲线进行比较。它表明,这些温度曲线遵循类似的趋势,仿真结果与半分析解决方案之间的差异小,误差小于5%。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号