首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Expanded graphite - Paraffin composite phase change materials: Effect of particle size on the composite structure and properties
【24h】

Expanded graphite - Paraffin composite phase change materials: Effect of particle size on the composite structure and properties

机译:膨胀石墨 - 石蜡复合相变材料:粒度对复合结构和性能的影响

获取原文
获取原文并翻译 | 示例
           

摘要

Expanded graphite (EG) is highly thermally conductive and has a porous structure, making it an ideal candidate for shape stabilisation of phase change materials (PCMs). We investigated the effect of EG size on the structure and properties of EG based paraffin composite PCMs for which no reports have been found in the literature. Large EG particles have a loose vermicular shape with a significant number of pores and voids of irregular shapes and varied sizes, which link together to form a strong networking structure. A higher degradation temperature with up to 31 degrees C increase was observed for the composite phase change material (CPCM) containing large EG particles, which also showed a significant level of thermal conductivity enhancement of up to 1695% compared with the paraffin. Phase change temperature hysteresis between the melting and solidification was observed on the CPCM made with large EG particles. A higher loading of the EG reduced the temperature hysteresis mainly attributed to a higher heat transfer rate. Fine EG particles are primarily in the form of loose graphite sheets. Such a structure gives a poor thermal cycling stability to composite PCMs containing fine EG particles than that using large EG particles. Composite PCMs made with fine EG particles also has a significantly higher thermal degradation temperature with up to 37 degrees C increase partially due to interfacial thermal resistance. The fine EG particles give also a good level of thermal conductivity enhancement of up to 340% to the composite PCMs, which is lower than those with large EG particles.
机译:膨胀石墨(例如)是高度导热的并且具有多孔结构,使其成为相变材料(PCM)的形状稳定的理想候选者。我们研究了例如基于石蜡复合PCM的例如基于石蜡复合PCM的结构和性质的效果,其中文献没有任何报告。较大的例如颗粒具有松散的蠕虫形状,具有大量孔隙和不规则形状的空隙和变化的尺寸,该尺寸包括在一起形成强大的网络结构。对于含有大型颗粒的复合相变材料(CPCM),观察到高达31℃的较高降解温度增加,该颗粒也显示出与石蜡相比的显着的导热率提高高达1695%。在用大规颗粒制成的CPCM上观察到熔融和凝固之间的相变温滞后。更高负载的例如降低温度滞后主要归因于较高的传热速率。精细的例如颗粒主要是松散石墨片的形式。这种结构使热循环稳定性较差至含有精细颗粒的复合PCM而不是使用大的例如颗粒。用诸如粒子制成的复合PCM,由于界面的热阻,部分具有高达37摄氏度的热降解温度明显较高。细粒颗粒的良好的热导率提高良好的热导率提高至340%,其低于具有大的例如颗粒的粒子。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号