首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Numerical investigation on a double layer combined cooling structure for aerodynamic heat control of hypersonic vehicle leading edge
【24h】

Numerical investigation on a double layer combined cooling structure for aerodynamic heat control of hypersonic vehicle leading edge

机译:高超声速车辆前缘气动热控制双层组合冷却结构的数值研究

获取原文
获取原文并翻译 | 示例
       

摘要

A novel double layer combined cooling conception is suggested in this paper, i.e., an inner layer with discrete slots to allocate the coolant locally and an outer layer with homogeneous porous matrix to diffuse the coolant extensively. To investigate the cooling performances, mechanisms and improvements of the new structure, an entire-field-coupled numerical approach is established and validated by the experimental data obtained in an arc-heated wind tunnel under the supersonic conditions of Ma = 4.2, T-0 = 2310 K and P-0 = 1.33 MPa. Using the validated numerical approach, three interesting attempts are conducted: (1) The cooling characteristics of four slot-layouts (S1/S3/S5/S7) are systematically studied and compared at three coolant injection rates (30/40/50 g/s). (2) The comparison indicated that S3 can decrease the peak temperature most greatly even by 66.9% when M-c = 50 g/s, hence it's chosen as the best design to investigate the cooling mechanisms in the entire region. (3) Based on the mechanism investigation, an improved design with a semi through-slot in the high temperature region is suggested, and the corresponding simulation predicated that this design can further reduce the coolant consumption by 20%. This work aims to provide the designers of future hypersonic vehicles with a valuable reference, to search for an active thermal management approach with high efficiency and low thermal stress.
机译:本文提出了一种新型的双层组合冷却概念,即,具有离散槽的内层,以局部地分配冷却剂和具有均匀多孔基质的外层以广泛地扩散冷却剂。为了研究新结构的冷却性能,机制和改进,通过在MA = 4.2,T-0的超声波条件下的弧形风隧道中获得的实验数据建立和验证了整个场耦合的数值方法。 = 2310 k和p-0 = 1.33 MPa。使用验证的数值方法,进行了三次有趣的尝试:(1)系统地研究了四个槽布局的冷却特性(S1 / S3 / S5 / S7),并以三种冷却剂注入速率进行比较(30/40/50 g / s)。 (2)比较表明,当M-C = 50克/秒时,S3甚至可以将峰值温度大大降低66.9%,因此选择作为研究整个区域中的冷却机制的最佳设计。 (3)基于机制调查,提出了高温区域中具有半通槽的改进设计,并且相应的模拟预测,这种设计可以进一步将冷却剂消耗降低20%。这项工作旨在为未来超音速车辆的设计者提供有价值的参考,以寻找具有高效率和低热应力的有源热管理方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号