首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Thermodynamic analysis for working fluids comparison in Rankine-type cycles exploiting the cryogenic exergy in Liquefied Natural Gas (LNG) regasification
【24h】

Thermodynamic analysis for working fluids comparison in Rankine-type cycles exploiting the cryogenic exergy in Liquefied Natural Gas (LNG) regasification

机译:在液化天然气(LNG)重新升值中利用低温漏洞的rancient型循环中的工作流体的热力学分析

获取原文
获取原文并翻译 | 示例
       

摘要

Most regasifying plants waste the cold exergy stored in Liquefied Natural Gas (LNG), which could otherwise be utilized for power production with the advantage of displacing fossil-fuel. Although thermodynamic assessments of appropriate cycles using LNG as heat sink can be found in the literature and for various working fluids, their direct comparison is difficult or impossible as they obey to different constraints. This paper contributes to fill this gap. It considers simple Rankine type cycles and direct expansion, as well as the combination of both. These cycles are thermodynamically modelled and systematically computed under the same boundary conditions, for a set of working fluids. A multi objective optimisation by using genetic algorithms was carried out seeking both the maximum net electric power and the minimum heat exchanger capacity. Plotting the optimised Pareto front curves for each fluid helps in reaching a customised design from compromises between power production and cost. The case study coastal plant (Sines, Portugal) currently consumes around 1.2.MW. Upgrading with just a direct expansion would save 830 kW, while a Rankine cycle could produce up to 2 MW of net power. Adding a direct expansion to a Rankine cycle will only marginally improve the edging power production. (C) 2017 Elsevier Ltd. All rights reserved.
机译:大多数重新缩小植物都浪费储存在液化天然气(LNG)中的寒冷驱散物,否则可以用于电力产生,其具有使化石燃料的优势。尽管可以在文献中找到使用LNG作为散热器的适当循环的热力学评估,但是对于各种工作流体,它们的直接比较是困难或不可能的,因为它们服从不同的限制。本文有助于填补这种差距。它考虑了简单的朗肯类型周期和直接扩展,以及两者的组合。对于一组工作流体,这些循环在热力学模型和系统地计算在相同的边界条件下。通过使用遗传算法进行多目标优化,寻求最大净电力和最小热交换器容量。为每个流体绘制优化的帕累托前曲线有助于从电力生产和成本之间的妥协到达定制设计。案例研究沿海植物(田陵,葡萄牙)目前消耗1.2.mw。只需直接扩展升级将节省830千瓦,而兰肯周期可能会产生高达2兆瓦的净功率。向Quankine循环添加直接扩展只会略微改善边缘电力生产。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号