首页> 外文期刊>Applied thermal engineering: Design, processes, equipment, economics >Application of an integrated lumped parameter-CFD approach to evaluate the ejector-driven anode recirculation in a PEM fuel cell system
【24h】

Application of an integrated lumped parameter-CFD approach to evaluate the ejector-driven anode recirculation in a PEM fuel cell system

机译:集成集集参数-CFD方法在PEM燃料电池系统中评估喷射器驱动的阳极再循环

获取原文
获取原文并翻译 | 示例
       

摘要

Proton exchange membrane fuel cells (PEMFCs) are considered a promising candidate to replace internal combustion engines. The unconsumed hydrogen, in PEMFC systems, is released at the anode exit and a recirculation can be applied to increase the fuel utilization; to this end, a recirculation system is needed and ejector technology is a promising technique, considering its many advantages. Unfortunately, ejectors are characterized by extremely complex fluid dynamic phenomena and a small deviation from the optimum operating condition might drastically lower the performances of the ejector itself and, consequently, of the whole ejector-based system. For this reason, multi-scale models taking into account both the "local-scale" and the "component-scale" fluid dynamics phenomena should be applied to evaluate the performance of ejector-based systems. In this paper, we contribute to the existing discussion concerning multi-scale modeling techniques and we propose an integrated lumped parameter- Computational Fluid Dynamics model to investigate the performance of convergent-nozzle ejectors for the anode recirculation in PEMFC systems. The integrated approach is based on a lumped parameter model (able to estimate the "component-scale" performance) with variable ejector component efficiencies, provided by Computational Fluid Dynamics simulations (able to predict the "local-scale" phenomena). Computational Fluid Dynamics simulations have been used to investigate the ejector "local-scale" fluid dynamic phenomena and to formulate correlations for ejector component efficiencies, thus linking ejector component efficiencies to the "local-scale" phenomena. In the first part of the paper, the integrated lumped parameter-Computational Fluid Dynamics approach has been formulated, validated and compared with different constant efficiency models, showing better performance and a wider range of applicability. In the second part of the paper, the integrated approach has been included in a complete PEMFC system model (considering both electro-chemical and pressure-drop effects). It has been demonstrate that a small deviation from the optimum operating condition of the ejector lower the performances of the whole system. The Integrated lumped parameter model-Computational Fluid Dynamics approach, because of the variable ejector component efficiencies, has been able to correctly consider the off-design performance of an ejector based system; conversely, constant ejector component efficiency models cannot correctly predict the performance of the PEMFC system. In conclusion, the use of variable ejector component efficiency models is needed in order to (a) provide a realistic model of the system and (b) analyze the performance in both for on-design and off-design performance. In addition, the proposed paper also provides a demonstration for the implementation of modeling involving both fluid dynamics and electro-chemical analysis in the context of fuel cells. (C) 2017 Elsevier Ltd. All rights reserved.
机译:质子交换膜燃料电池(PEMFC)被认为是更换内燃机的有希望的候选者。在PEMFC系统中,在PEMFC系统中释放的未掺杂氢,并且可以应用再循环以增加燃料利用;为此,需要一种再循环系统,并且考虑到其许多优点,所需的技术是一种有希望的技术。遗憾的是,喷射器的特征在于极其复杂的流体动态现象,并且与最佳操作条件的小偏差可能会大大降低喷射器本身的性能,并且因此,基于喷射器的系统的性能。因此,应应用“本地规模”和“组件级”流体动力学现象的多尺度模型来评估基于喷射器的系统的性能。在本文中,我们有助于现有的多尺度建模技术讨论,并提出了一种集成的集总参数计算流体动力学模型,以研究PEMFC系统中的阳极再循环的收敛喷嘴喷射器的性能。综合方法基于集总参数模型(能够估计通过计算流体动力学模拟(能够预测“本地级”现象)提供的可变弹射器分量效率的“组件级”性能“。计算流体动力学模拟已经用于研究喷射器“局部级”流体动态现象,并配制出喷射器分量效率的相关性,从而将喷射器分量效率连接到“局部级”现象。在本文的第一部分中,已制定,验证和与不同恒定效率模型进行了配制,验证和比较了集成的集成参数计算流体动力学方法,显示出更好的性能和更广泛的适用性。在本文的第二部分中,综合方法已包含在完整的PEMFC系统模型中(考虑到电气化学和压力效应)。已经证明,与喷射器的最佳操作条件的较小偏差降低了整个系统的性能。集成的集成参数模型 - 计算流体动力学方法,因为变量弹出器分量效率已经能够正确考虑基于喷射器的系统的非设计性能;相反,恒定的喷射器组件效率模型无法正确预测PEMFC系统的性能。总之,需要使用可变弹射器元件效率模型,以便(a)提供系统的现实模型,(b)分析了用于设计和非设计性能的性能。此外,拟议文件还提供了实施涉及燃料电池背景下的涉及流体动力学和电化学分析的建模的示范。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号