...
首页> 外文期刊>Applied Microbiology and Biotechnology >Adhesion of Rhodococcus ruber IEGM 342 to polystyrene studied using contact and non-contact temperature measurement techniques
【24h】

Adhesion of Rhodococcus ruber IEGM 342 to polystyrene studied using contact and non-contact temperature measurement techniques

机译:使用触点和非接触温度测量技术研究了rhodococcus ruber Igm 342对聚苯乙烯的粘附性

获取原文
获取原文并翻译 | 示例
           

摘要

Adhesion of industrially important bacteria to solid carriers through the example of actinobacterium Rhodococcus ruber IEGM 342 adhered to polystyrene was studied using real-time methods, such as infrared (IR) thermography and thermometry with platinum resistance (PR) detectors. Dynamics of heat rate and heat production was determined at early (within first 80 min) stages of rhodococcal cell adhesion. Heat rate was maximal (1.8 x 10(-3)-2.7 x 10(-3) W) at the moment of cell loading. Heat production was detected for the entire length of adhesion, and its dynamics depended on concentration of rhodococcal cells. At high (1 x 10(10) CFU/ml) cell concentration, a stimulative (in 1.7 and 1.4 times consequently) effect of polystyrene treatment with Rhodococcus-biosurfactant on the number of adhered rhodococcal cells and cumulative heat production at rhodococcal cell adhesion was revealed. The values of heat flows (heat rate 0.3 x 10(-3)-2.7 x 10(-3) W, heat production up to 8.2 x 10(-3) J, and cumulative heat production 0.20-0.53 J) were 5-30 times higher than those published elsewhere that indicated high adhesive activity of R. ruber IEGM 342 towards polystyrene. To analyze experimental results and predict effects of boundary conditions on the temperature distribution, a mathematical model for heating a polystyrene microplate with distributed heat sources has been developed. Two independent experimental methods and the numerical modeling make it possible to verify the experimental results and to propose both contact and non-contact techniques for analyzing kinetics of bacterial adhesion.
机译:使用实时方法研究了通过粘附到聚苯乙烯的抗菌菌的实例对固体载体的工业上重要的细菌对固体载体的粘附性,例如红外线(IR)热成像和具有铂电阻(PR)检测器的温度法。在rhodococal细胞粘附的早期(在前80分钟内)阶段确定热速率和热量产生的动态。在细胞载荷时,热速率最大(1.8×10(-3)-2.7×10(-3)W)。为整个粘附长度检测热量生产,其动力学依赖于抑制肾功能粥区段。在高(1×10(10)cfu / ml)细胞浓度下,刺激(如1.7和1.4次)聚苯乙烯与rhodococcus-bioSurifactant对粘附的菱形细胞数量和rhodococal Cell Cell Celligation的累积热产生的影响透露。热流的值(热速率0.3×10(-3)-2.7×10(-3)W,热量产量高达8.2×10(3)j,累积热量产量为0.20-0.53 j)为5-比在其他地方发表的30倍,将R.Ruber Iegm 342的高粘合剂活性朝向聚苯乙烯的别的别的30倍。为了分析实验结果并预测边界条件对温度分布的影响,已经开发了一种用分布热源加热聚苯乙烯微孔板的数学模型。两种独立的实验方法和数值模型使得可以验证实验结果,并提出用于分析细菌粘附动力学的接触和非接触技术。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号