...
首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4 surface heterojunction
【24h】

Photocatalytic properties of the g-C3N4/{010} facets BiVO4 interface Z-Scheme photocatalysts induced by BiVO4 surface heterojunction

机译:G-C3N4 / {010}的光催化性质突出的BIVO4接口Z方案光催化剂由BIVO4表面异质结诱导

获取原文
获取原文并翻译 | 示例
           

摘要

The g-C3N4/{010} facets BiVO4 interface Z-scheme photocatalysts is fabricated by ultrasonic dispersion method. The density functional theory (DFT) shows that the differences of the energy levels in the conduction bands and the valence bands between the {010} and {110} facets of BiVO4 is about 0.37 and 0.31 V (vs. NHE, pH = 7), respectively. Therefore, the co-exposed {010} and {110} facets of BiVO4 can form surface heterojunction, which promotes the {010} facets of BiVO4 with negative charge. The zeta potential indicates that layered g-C3N4 with positive charge. The Raman, FT-IR and XPS analysis demonstrates that the layered g-C3N4 is anchored on the {010} facets of BiVO4 through strong interface electrostatic interaction, which leads to form a built in electric field at the contact interface. Under the built-in electric field driving, photogenerated electrons in the CB of {010} facets of BiVO4 rapidly recombines with the holes in the VB of g-g-C3N4 to form the interface Z-scheme heterostructure. That is, BiVO4 surface heterojunction ultimately induces the formation of interface Z-scheme heterostructure. The interface Z-scheme heterostructure not only facilitates the space separation of the photogenerated carriers, but also accumulates electrons in the more negative potentiated CB of g-C3N4 and holes in the more positive VB of {110} facets of BiVO4. Consequently, by means of the I-t, ISV and EIS measurements, the g-C3N4/{010} facets of BiVO4 interface Z-scheme photocatalysts presents extraordinary photoelectrochemical performance. More importantly, the degradation rate of g-C3N4/{010} facets of BiVO4 interface Z-scheme photocatalysts can reach the highest 88.3% within 30 min under visible light irradiation, and the mineralization ability (96.03%) is about 2.24 and 3.32 times as high as that of BiVO4 (42.83%) and g-C3N4 (28.89%), respectively.
机译:通过超声波分散法制造G-C3N4 / {010}面部Bivo4接口Z-方案光催化剂。密度泛函理论(DFT)表明,传导带中的能量水平和BIVO4的{010}和{110}小平面之间的能量水平的差异为约0.37和0.31V(Vs.nhe,pH = 7) , 分别。因此,BIVO4的共同暴露的{010}和{110}刻面可以形成表面异质结,其促进BIVO4的{010}面与负电荷。 Zeta电位表明层叠的G-C3N4具有正电荷。拉曼,FT-IR和XPS分析表明,层叠的G-C3N4通过强大的界面静电相互作用锚定在BIVO4的{010}小平面上,这导致在接触界面处形成电场内置的电场。在内置电场驱动下,BIVO4的{010}小平面的CB中的光发射电子快速重新结合GB-G-C3N4中的孔,形成界面Z-方案异质结构。也就是说,BIVO4表面异质结最终诱导接口Z方案异质结构的形成。界面Z-方案异质结构不仅促进了光生载体的空间分离,而且还累积在更阳性VB的G-C3N4和Bivo4的{110}小平面中的更负调节CB中的电子。因此,通过I-T,ISV和EIS测量,BIVO4接口Z方案光催化剂的G-C3N4 / {010}小平面呈现出非凡的光电化学性能。更重要的是,在可见光照射下,BIVO4接口Z-Scheme光催化剂的G-C3N4 / {010}的降解率可以在30分钟内达到最高的88.3%,并且矿化能力(96.03%)约为2.24和3.32倍高于Bivo4(42.83%)和G-C3N4(28.89%)的高度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号