首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes
【24h】

Enhancing sulfacetamide degradation by peroxymonosulfate activation with N-doped graphene produced through delicately-controlled nitrogen functionalization via tweaking thermal annealing processes

机译:通过通过调整热退火工艺通过精致控制的氮官能化产生通过精致控制的氮气官能化的过氧键硫酸盐活化来增强磺乙胺硫化物的降解

获取原文
获取原文并翻译 | 示例
           

摘要

Nitrogen-doped graphenes (NG) fabricated through thermal annealing of graphene oxide (GO) and urea was applied to activate peroxymonosulfate (PMS) for sulfacetamide (SAM) degradation. The contents of reactive functional groups (graphitic N, pyridinic N, pyrrolic N, nitric oxide and C=O) and catalytic performance of NG were delicately controlled by adjusting thermal annealing temperature. Thermal annealing temperature of = 500 degrees C was required to produce the NG endowed with catalytic activity for SAM degradation via PMS activation. NG600 (NG prepared at 600 degrees C) with a high N doping level (16.0 wt%) and a most optimum amount of pyridinic N (38.4%N), pyrrolic N (31.8%N), graphitic N (25.9%N) and C=O groups (43.7%O) exhibited the most outstanding catalytic activity to activate PMS. NG600 with the controlled N bonding configurations possessed a higher SAM degradation efficiency than NGs prepared via other optimized synthesis methods The specific surface area (SSA) contributed less significantly than N doping to the SAM degradation performance. Increments in the PMS dosage and catalyst loading were both conducive to the catalytic performance of NG. The presence of NO3- in the NG600/PMS system had a negligible influence on SAM degradation but C-l(-) and humic acid decreased the SAM degradation rate. Experiments using chemical scavengers and electron paramagnetic resonance (EPR) study revealed that SAM degradation process follows predominantly the radical pathway with sulfate radical (SO4 center dot(-)) as the main reactive oxygen species over the non-radical pathway. Density functional theory (DFT) calculations suggest that graphitic N can facilitate PMS adsorption on the NG and SAM degradation. This study improves the understanding on the role of different surface N functional groups of NG in the PMS activation.
机译:施用通过石墨烯(GO)和尿素的热退火制造的氮掺杂石墨烯(NG)以激活过氧键酰胺(PMS),用于磺乙酰胺(SAM)降解。通过调节热退火温度,精细控制反应性官能团(石墨N,吡啶碱,吡啶基,一氧化氮和C = O)和Ng的催化性能。热退火温度为& = 500℃,以通过PMS活化产生催化活性的Ng赋予SAM降解的Ng。 NG600(NG在600℃下制备),具有高N掺杂水平(16.0wt%)和最佳的吡啶N(38.4%N),吡咯N(31.8%N),石墨N(25.9%N)和C = O基团(43.7%)表现出最突出的催化活性以激活PM。具有受控N键合配置的NG600具有比通过其他优化的合成方法制备的NGS更高的SAM劣化效率,比表面积(SSA)较小而不是N掺杂到SAM降解性能。 PMS剂量和催化剂负载中的增量有利于Ng的催化性能。 NG600 / PMS系统中NO 3的存在对SAM降解的影响忽略不计,但C-L( - )和腐殖酸降低了SAM降解速率。使用化学清除剂和电子顺磁共振(EPR)研究的实验表明,SAM降解过程主要是具有硫酸盐自由基(SO4中心点( - ))作为非自由基途径的主要反应性氧物质的自由基途径。密度函数理论(DFT)计算表明,石墨N可以促进对NG和SAM降解的PMS吸附。该研究改善了对PMS激活中NG不同表面N官能团的作用的理解。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号