首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Stable bimetallic Ru-Mo/Al2O3 catalysts for the light alkane combustion: Effect of the Mo addition
【24h】

Stable bimetallic Ru-Mo/Al2O3 catalysts for the light alkane combustion: Effect of the Mo addition

机译:用于轻质烷烃燃烧的稳定双金属Ru-Mo / Al2O3催化剂:MO添加的影响

获取原文
获取原文并翻译 | 示例
       

摘要

A series of Ru-Mo/gamma-Al2O3 catalysts containing fixed Ru loading (5 wt.%) and variable Mo contents (1.6, 4.8 and 9.5 wt.%), were synthesized by co-impregnation method using Ru(NO)(NO3)(3) and (NH3)(6)Mo7O24 x 4H(2)O as metal precursors and their catalytic characteristics were evaluated for the first time in combustion of propane used as a model compound. The effect of the Ru/Mo atomic ratio (3:1, 1:1 and 1:2) on the structure of the reduced samples was investigated by ICP-AES, BET, XRD, HRTEM, SEM-EDX, H-2-TPR and chemisorption of hydrogen and oxygen. The surface properties of the catalysts were detailed studied by XPS spectroscopy. Structural characterization data lead to conclusion that a synergy effect of ruthenium and molybdenum is observed in the Ru-Mo/gamma-Al2O3 catalysts. An increase of Mo loading caused the formation of smaller nanoparticles (d(av) = 1.3, 1.0 and 0.8 nm, respectively) as compared to the monometallic Ru system (d(av) = 1.4 nm). For low Mo loading (Ru:Mo atomic ratio of 3:1) the H-2 uptake was higher (H/Ru = 0.55) than in the Ru/gamma-Al2O3 sample (H/Ru = 0.52). This leads to the high activity of the 5%Ru-1.6%Mo catalyst in the propane combustion (TOF = 0.034 (s(-1))). Moreover, the catalytic stability was much higher for the bimetallic Ru-Mo systems than for the monometallic Ru catalyst. Despite their high thermal stability under oxygen-rich atmosphere, bimetallic catalyst containing 4.8%Mo (Ru:Mo atomic ratio of 1:1) was less active in propane oxidation (TOF = 0.016 (s-1)) than the Ru system (TOF = 0.029 (s(-1))). The lower activity results from partial blocking the active centers on the ruthenium by covering them with an inactive MoOx layer. At the highest Mo content (Ru:Mo atomic ratio of 1:2) the blocking of the active Ru centres increases, much lower H-2 chemisorption capacity and a significant increase of the metallic Ru (74%) and metallic Mo (25%) species, resistant to oxidation at low temperature, were observed. This leads to very low activity of the 5%Ru-9.5%Mo catalyst in the propane combustion. Importantly, our studies also revealed that the molybdenum modifies interaction of hydrogen and oxygen with ruthenium in the Ru-Mo catalysts. For hydrogen, the adsorption process becomes activated and Mo species weaken the adsorption strength.
机译:通过使用Ru(NO)的共浸渍方法合成含有固定Ru负载(5重量%)和可变Mo含量(1.6,4.8和9.5重量%)的Ru-Mo /γ-Al2O3催化剂(1.6,4.8和9.5重量%)(NO3 (3)和(NH 3)(6)Mo7O24×4H(2)o作为金属前体,并在用作模型化合物的丙烷燃烧中首次评价其催化特性。 Ru / Mo原子比(3:1,1:1和1:2)对减少样品的结构的影响,通过ICP-AES,BET,XRD,HRTEM,SEM-EDX,H-2-研究了降脂样品的结构TPR和氢气和氧的化学吸附。通过XPS光谱研究催化剂的表面性质。结构表征数据导致结论在Ru-Mo /γ-Al2O3催化剂中观察到钌和钼的协同作用。与单金属Ru系统相比,Mo负载的增加导致形成较小的纳米颗粒(D(AV)= 1.3,1.0和0.8nm)(D(AV)= 1.4nm)。对于低Mo负载(Ru:Mo原子比为3:1),H-2摄取更高(H / Ru = 0.55),而不是Ru /γ-Al 2 O 3样品(H / Ru = 0.52)。这导致丙烷燃烧中的5%Ru-1.6%Mo催化剂的高活性(TOF = 0.034(S(-1)))。此外,对于双金属ru-Mo系统而言,催化稳定性远高于单金属ru催化剂。尽管在富氧气氛下具有高的热稳定性,但含有4.8%Mo的双金属催化剂(Ru:Mo原子比为1:1)在丙烷氧化(TOF = 0.016(S-1))中较低,而不是Ru系统(TOF = 0.029(s(-1))))。通过用无活性的MOOX层覆盖它们,较低的活性由部分阻断活性中心在钌上封闭。在最高的Mo含量(Ru:Mo原子比为1:2)中,活性Ru中心的阻断增加,较低的H-2化学吸取能力和金属Ru(74%)和金属Mo的显着增加(25% )观察到在低温下耐氧化的物种。这导致丙烷燃烧中的5%Ru-9.5%Mo催化剂的活性非常低。重要的是,我们的研究还表明,钼将氢气和氧与Ru-Mo催化剂中的钌改变的相互作用。对于氢,吸附过程变为活化,Mo物种削弱了吸附强度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号