首页> 外文期刊>Applied Catalysis, B. Environmental: An International Journal Devoted to Catalytic Science and Its Applications >Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting
【24h】

Bamboo shoots shaped FeVO4 passivated ZnO nanorods photoanode for improved charge separation/transfer process towards efficient solar water splitting

机译:竹笋形状FEVO4钝化ZnO纳米棒PhotoNode,用于改进电荷分离/转移过程,以高效的太阳能分裂

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Among many novel and promising semiconductors, the triclinic iron vanadate (FeVO4) has been rarely applied in the field of solar water splitting due to its poor charge carrier separation ability. In this work, we prepared FeVO4-passivated ZnO heterojunction nanorods (FVO/ZnO NRs) photoanodes by simple spin-coating and calcination method for the first time. The optimal photoanode exibihits stable and effective PEC water oxidation performance, compared to pristine ZnO, affording 130 mV negative shift in onset potential and 2.4 folds augment in photocurrent density. Particularly, X-ray photoelectron spectroscopy and Mott-Schottky test reveal the establishment of heterojunction, which subdue photo-induced carriers bulk recombination and improve the charge separation efficiency. Open-circuit photovoltage and electrochemical impedance spectroscopy were recorded to further clarify that the FeVO4-passivated layer eliminates the surface trapping state, thus increasing the photovoltage and promoting the interface charge transfer kinetics. These demonstrations are expected to provide new thread for the rational application of new photoanode candidates and to optimize PEC performance.
机译:在许多新颖和有前途的半导体中,由于其较差的电荷载体分离能力,三级铁钒酸盐(FEVO4)已经很少应用于太阳能水分裂领域。在这项工作中,我们首次通过简单的旋涂和煅烧方法制定了FEVO4钝化的ZnO异质结纳米棒(FVO / ZnO NRS)光桥。与原始ZnO相比,最佳的光电码以稳定且有效的PEC水氧化性能,得到130mV负变化,在发病电位和2.4倍以光电流的增长。特别地,X射线光电子体光谱和MOTT-SCHOTTKY测试揭示了异质结的建立,该杂交载体散装重组和提高电荷分离效率。记录开路光伏电压和电化学阻抗光谱,以进一步阐明FEVO4钝化层消除了表面捕集状态,从而增加了光电电压并促进接口电荷转移动力学。这些演示预计将为新的PhotoNode候选人的合理应用提供新的线程,并优化PEC性能。

著录项

  • 来源
  • 作者单位

    Lanzhou Univ Coll Chem &

    Chem Engn Key Lab Catalyt Engn Gansu Prov SKLAOC Lanzhou 730000 Gansu Peoples R China;

    Lanzhou Univ Coll Chem &

    Chem Engn Key Lab Catalyt Engn Gansu Prov SKLAOC Lanzhou 730000 Gansu Peoples R China;

    Lanzhou Univ Coll Chem &

    Chem Engn Key Lab Catalyt Engn Gansu Prov SKLAOC Lanzhou 730000 Gansu Peoples R China;

    Lanzhou Univ Coll Chem &

    Chem Engn Key Lab Catalyt Engn Gansu Prov SKLAOC Lanzhou 730000 Gansu Peoples R China;

    Lanzhou Univ Coll Chem &

    Chem Engn Key Lab Catalyt Engn Gansu Prov SKLAOC Lanzhou 730000 Gansu Peoples R China;

    Lanzhou Univ Coll Chem &

    Chem Engn Key Lab Catalyt Engn Gansu Prov SKLAOC Lanzhou 730000 Gansu Peoples R China;

    Lanzhou Univ Coll Chem &

    Chem Engn Key Lab Catalyt Engn Gansu Prov SKLAOC Lanzhou 730000 Gansu Peoples R China;

    Lanzhou Univ Coll Chem &

    Chem Engn Key Lab Catalyt Engn Gansu Prov SKLAOC Lanzhou 730000 Gansu Peoples R China;

    Lanzhou Univ Coll Chem &

    Chem Engn Key Lab Catalyt Engn Gansu Prov SKLAOC Lanzhou 730000 Gansu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 催化;
  • 关键词

    FeVO4; Heterojunction; Surface states; Photoelectrochemical water splitting; ZnO nanorods;

    机译:Fevo4;异质结;表面状态;光电化学水分解;ZnO纳米棒;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号