首页> 外文期刊>Analytical and bioanalytical chemistry >Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis
【24h】

Separation of sub-micron particles from micron particles using acoustic fluid relocation combined with acoustophoresis

机译:使用声液迁移与声渗透压分离微米颗粒的亚微米颗粒的分离

获取原文
获取原文并翻译 | 示例
           

摘要

Acoustophoresis has gained increasing attention as a gentle, non-contact, and high-throughput cell and particle separation technique. It is conveniently used to isolate and enrich particles that are greater than 2?μm; however, its use in manipulating particles smaller than 2?μm is limited. In this work, we present an alternative way of using acoustic forces to manipulate sub-micrometer particles in continuous flow fashion. It has been shown that acoustic forces can be employed to relocate parallel laminar flow streams of two impedance-mismatched fluids. We demonstrate the separation of sub-micron particles from micron particles by the combination of acoustophoresis and acoustic fluid relocation. The micron particles are focused into the middle of the flow channel via primary acoustic forces while sub-micron particles are moved to the side via drag forces created by the relocating fluid. We demonstrate the proof of the concept using binary mixtures of particles comprised of sub-micron/micron particles, micron/micron particles, and bovine red blood cells with E. coli . The efficiency of the particle enrichment is determined via flow cytometry analysis of the collected streams. This study demonstrates that by combining acoustic fluid relocation with acoustophoresis, sub-micron particles can be effectively separated from micron particles at high flow rates and it can be further implemented to separate binary mixtures of micron particles if the volumetric ratio of two particles is greater than 10 and the larger particle diameter is about 10?μm. The combined method is more appropriate to use than acoustophoresis in situations where acoustic streaming and differences in acoustic impedance of fluids can be of?concern. Graphical abstract In the presence of a resonance acoustic field, the clean high-density fluid (dark gray) and the low-density sample fluid are relocated. During this process, E. coli are separated from the red blood cells (RBCs).
机译:声渗透渗透蛋白随着温和,非接触和高通量细胞和颗粒分离技术而增加的关注。它方便地用于分离和富集大于2≤μm的颗粒;然而,它在操纵小于2Ωμm的操纵颗粒中的用途是有限的。在这项工作中,我们提出了一种使用声学力以连续流动方式操纵子微米粒子的替代方法。已经表明,可以采用声压来重新加速两个阻抗失配流体的平行层流流。我们证明了通过散孔和声流体搬迁的组合将亚微米颗粒与微米颗粒分离。微米颗粒通过主声学力聚焦到流动通道的中间,而亚微米颗粒通过由迁移流体产生的拖曳力移动到侧面。我们使用由亚微米/微颗粒,微米/微颗粒和牛红血细胞组成的颗粒的二元混合物证明了概念的证据。通过收集的流的流式细胞术分析确定颗粒富集的效率。该研究表明,通过将声流体迁移与声渗透渗透,可以在高流速下将亚微米颗粒与微米颗粒分离,并且如果两个颗粒的体积比大于的体积比大于10和较大的粒径为约10≤μm。组合方法比在声学流媒体的情况下的情况下比声渗透电极更合适,并且流体的声阻抗的差异是疑处的。图形摘要在存在共振声场时,清洁高密度流体(深灰色)和低密度样品流体被重新定位。在该过程中,大肠杆菌与红细胞(RBC)分离。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号