首页> 外文期刊>Analytica chimica acta >High bandwidth approaches in nanopore and ion channel recordings - A tutorial review
【24h】

High bandwidth approaches in nanopore and ion channel recordings - A tutorial review

机译:纳米孔和离子通道记录中高带宽接近 - 教程评论

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Transport processes through ion-channel proteins, protein pores, or solid-state nanopores are traditionally recorded with commercial patch-clamp amplifiers. The bandwidth of these systems is typically limited to 10 kHz by signal-to-noise-ratio (SNR) considerations associated with these measurement platforms. At high bandwidth, the input-referred current noise in these systems dominates, determined by the input-referred voltage noise of the transimpedance amplifier applied across the capacitance at the input of the amplifier. This capacitance arises from several sources: the parasitic capacitance of the amplifier itself; the capacitance of the lipid bilayer harboring the ion channel protein (or the membrane used to form the solid-state nanopore); and the capacitance from the interconnections between the electronics and the membrane. Here, we review state-of-the-art applications of high-bandwidth conductance recordings of both ion channels and solid-state nanopores. These approaches involve tightly integrating measurement electronics fabricated in complementary metal-oxide semiconductors (CMOS) technology with lipid bilayer or solid-state membranes. SNR improvements associated with this tight integration push the limits of measurement bandwidths, in some cases in excess of 10 MHz. Recent case studies demonstrate the utility of these approaches for DNA sequencing and ion-channel recordings. In the latter case, studies with extended bandwidth have shown the potential for providing new insights into structure-function relations of these ion-channel proteins as the temporal resolutions of functional recordings matches time scales achievable with state-of-the-art molecular dynamics simulations. (C) 2019 Elsevier B.V. All rights reserved.
机译:通过离子通道蛋白质,蛋白质孔或固态纳米孔的运输过程传统上用商业补丁钳放大器记录。通过与这些测量平台相关联的信噪比(SNR)考虑,这些系统的带宽通常限制为10kHz。在高带宽中,这些系统中的输入引用的电流噪声主导,由跨阻抗放大器的输入参考电压噪声确定在放大器的输入端的电容上施加跨越电容。该电容来自几个来源:放大器本身的寄生电容;含有离子通道蛋白质的脂质双层的电容(或用于形成固态纳米孔的膜);并且来自电子和膜之间的互连的电容。在此,我们审查了离子通道和固态纳米孔的高带宽电导记录的最先进的应用。这些方法涉及用脂质双层或固态膜紧密地整合在互补金属氧化物半导体(CMOS)技术中制造的测量电子器件。与这种紧密集成相关的SNR改进推动测量带宽的极限,在某些情况下超过10 MHz。最近的案例研究证明了这些方法对DNA测序和离子通道记录的效用。在后一种情况下,具有扩展带宽的研究表明,在这些离子通道蛋白的结构功能关系中提供新的见解,因为功能记录的时间分辨率与最先进的分子动力学模拟相匹配的功能录音的时间分辨率。 (c)2019年Elsevier B.V.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号