首页> 外文期刊>Analytical chemistry >Platinum Nanozyme-Catalyzed Gas Generation for Pressure-Based Bioassay Using Polyaniline Nanowires-Functionalized Graphene Oxide Framework
【24h】

Platinum Nanozyme-Catalyzed Gas Generation for Pressure-Based Bioassay Using Polyaniline Nanowires-Functionalized Graphene Oxide Framework

机译:使用聚苯胺纳米线 - 官能化石墨烯氧化物框架对压力基生物测定的铂纳佐催化气体产生

获取原文
获取原文并翻译 | 示例
       

摘要

Pressure-based bioassays incorporating biomolecular recognition with a catalyzed gas-generation reaction have been developed for gas biosensors, but most involve poor sensitivity and are unsuitable for routine use. Herein we design an innovative gas pressure-based biosensing platform for the detection of Kanamycin (Kana) on polyaniline nanowires-functionalized reduced graphene oxide (PANI/rGO) framework by using platinum nanozyme-catalyzed gas generation. The signal was amplified by coupling with catalytic hairpin assembly (CHA) and strand-displacement amplification (SDA). Upon target Kana introduction, the analyte initially triggered a SDA reaction between hairpin DNA1 and hairpin DNA2, and then induced CHA conjugation between magnetic bead-labeled hairpin DNA3 (MB-H3) and platinum nanoparticle-labeled hairpin DNA4 (Pt-H4) to form a three-dimensional network. Numerous platinum nanoparticles (peroxidase-like nanozymes) were carried over with magnetic beads to reduce hydrogen peroxide into oxygen. The as-produced gas compressed PANI/rGO frameworks (modified to polyurethane sponge, used as the piezoelectric materials) in a homemade pressure-tight device, thus causing the increasing current of PANI/rGO sponge thanks to its deformation. The change in the current caused by the as-generated gas pressure was determined on an electrochemical workstation. Under optimum conditions, PANI/rGO sponge exhibited outstanding compressibility, stable signal-waveform output, fast response and recovery time (approximate to 109 ms), and the current increased with the increasing Kana concentration within a dynamic working range of 0.2-50 pM at a detection limit of 0.063 pM. Good reproducibility, specificity, and acceptable precision were acquired for Kana analysis. In addition, the accuracy of this method was monitored to evaluate real milk samples with the well-matched results obtained by using the referenced Kana ELISA kit.
机译:已经开发了掺入催化气体发生反应的生物分子识别的基于压力的生物测定,但对于气体生物传感器,但大多数涉及较差的敏感性并且不适合常规使用。这里,我们设计了一种用于通过使用铂纳米碱催化气体产生的聚苯胺纳米线(KanaIn纳米线官能化的石墨烯(PANI / RGO)框架上的Kanamycin(Kana)的基于创新的气体压力的生物传感平台。通过与催化发夹组装(CHA)和链位移扩增(SDA)偶联来扩增信号。在靶标介绍后,分析物最初触发发夹DNA1和发夹DNA2之间的SDA反应,然后在磁珠标记的发夹和铂纳米颗粒标记的发夹DNA4(Pt-H4)之间诱导CHA缀合以形成三维网络。用磁珠进行许多铂纳米颗粒(过氧化物酶样纳佐)以将过氧化氢降低到氧气中。在自制压力密封装置中,由制造的气体压缩锅/ rgo框架(修饰为用作压电材料),从而引起了PANI / RGO海绵的升高,因此感谢其变形。在电化学工作站上确定由产生的气体压力引起的电流的变化。在最佳条件下,PANI / RGO海绵表现出出色的可压缩性,稳定的信号波形输出,快速响应和恢复时间(近似为109毫秒),并且电流随着动态工作范围内的动态工作范围内的增加而增加,电流增加了0.2-50检出限为0.063 pm。获得良好的再现性,特异性和可接受的精度用于KANA分析。此外,监测该方法的准确性以评估通过使用参考的Kana Elisa试剂盒获得的良好匹配结果的真正的牛奶样品。

著录项

  • 来源
    《Analytical chemistry》 |2018年第20期|共8页
  • 作者单位

    Fuzhou Univ State Key Lab Photocatalysis Energy &

    Environm Dept Chem Key Lab Analyt Sci Food Safety &

    Biol MOE &

    Fujia Fuzhou 350108 Fujian Peoples R China;

    Fuzhou Univ State Key Lab Photocatalysis Energy &

    Environm Dept Chem Key Lab Analyt Sci Food Safety &

    Biol MOE &

    Fujia Fuzhou 350108 Fujian Peoples R China;

    Fuzhou Univ State Key Lab Photocatalysis Energy &

    Environm Dept Chem Key Lab Analyt Sci Food Safety &

    Biol MOE &

    Fujia Fuzhou 350108 Fujian Peoples R China;

    Fuzhou Univ State Key Lab Photocatalysis Energy &

    Environm Dept Chem Key Lab Analyt Sci Food Safety &

    Biol MOE &

    Fujia Fuzhou 350108 Fujian Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 分析化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号