首页> 外文期刊>Analytical chemistry >Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos
【24h】

Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos

机译:微内采样毛细管电泳质谱使复杂组织中的单细胞蛋白质组学能够:在生活Xenopus Laevis和斑马鱼胚胎中显影细胞克隆

获取原文
获取原文并翻译 | 示例
       

摘要

Label-free single-cell proteomics by mass spectrometry (MS) is currently incompatible with complex tissues without requiring cell culturing, single-cell dissection, or tissue dissociation. We here report the first example of label-free single-cell MS-based proteomics directly in single cells in live vertebrate embryos. Our approach integrates optically guided in situ subcellular capillary microsampling, one-pot extraction-digestion of the collected proteins, peptide separation by capillary electrophoresis, ionization by an ultrasensitive electrokinetically pumped nanoelectrospray, and detection by high-resolution MS (Orbitrap). With a 700 zmol (420 000 copies) lower limit of detection, this trace-sensitive technology confidently identified and quantified similar to 750-800 protein groups (<1% false-discovery rate) by analyzing just similar to 5 ng of protein digest, viz. <0.05% of the total protein content from individual cells in a 16-cell Xenopus laevis (frog) embryo. After validating the approach by recovering animal-vegetal-pole proteomic asymmetry in the frog zygote, the technology was applied to uncover proteomic reorganization as the animal-dorsal (D11) cell of the 16-cell embryo gave rise to its neural-tissue-fated clone in the embryo developing to the 32-, 64-, and 128-cell stages. In addition to enabling proteomics on smaller cells in X. laevis, we also demonstrated this technology to be scalable to single cells in live zebrafish embryos. Microsampling single-cell MS-based proteomics raises exciting opportunities to study cell and developmental processes directly in complex tissues and whole organisms at the level of the building block of life: the cell.
机译:通过质谱(MS)的无标记的单细胞蛋白质组学目前与复杂组织不相容,而不需要细胞培养,单细胞夹层或组织解离。我们在这里举报了直接在Live Vertebrate Embryos中的单个单元格中基于标签的单细胞MS的蛋白质组学的第一个例子。我们的方法与原位亚细胞毛细管微内采样,一锅萃取消解收集的蛋白质,通过毛细管电泳的肽分离,通过超细电离电离的纳米电子泵进行,并通过高分辨率MS(Orbitrap)检测。通过700 Zmol(420 000份)的检测限,通过分析类似于类似于5 ng蛋白质消化,这种微量敏感技术可自信地鉴定和量化类似于750-800蛋白基团(<1%的假发现率), viz。来自16细胞Xenopus Laevis(青蛙)胚胎中单个细胞的蛋白质总含量的0.05%。通过在蛙泳中恢复动物 - 植物极蛋白质组学不对称进行验证后,将该技术应用于揭示蛋白质组学重组,因为16细胞胚胎的动物背部(D11)细胞产生了神经组织叙事在胚胎中克隆发育至32-,64-和128个细胞阶段。除了在X. Laevis的较小细胞上实现蛋白质组学,我们还证明了这种技术可扩展到活斑马鱼胚胎中的单个细胞。微细胞基于单细胞MS的蛋白质组学提高了令人兴奋的机会,用于将细胞和发育过程直接研究在构建块的复杂组织和整个生物体中,在建筑物植物块的水平中:细胞。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号