...
首页> 外文期刊>American Journal of Physiology >Differential regulation of metabolism by nitric oxide and S-nitrosothiols in endothelial cells.
【24h】

Differential regulation of metabolism by nitric oxide and S-nitrosothiols in endothelial cells.

机译:内皮细胞中一氧化氮和S-亚硝基硫醇的差异调节。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

S-nitrosation of thiols in key proteins in cell signaling pathways is thought to be an important contributor to nitric oxide (NO)-dependent control of vascular (patho)physiology. Multiple metabolic enzymes are targets of both NO and S-nitrosation, including those involved in glycolysis and oxidative phosphorylation. Thus it is important to understand how these metabolic pathways are integrated by NO-dependent mechanisms. Here, we compared the effects of NO and S-nitrosation on both glycolysis and oxidative phosphorylation in bovine aortic endothelial cells using extracellular flux technology to determine common and unique points of regulation. The compound S-nitroso-L-cysteine (L-CysNO) was used to initiate intracellular S-nitrosation since it is transported into cells and results in stable S-nitrosation in vitro. Its effects were compared with the NO donor DetaNONOate (DetaNO). DetaNO treatment caused only a decrease in the reserve respiratory capacity; however, L-CysNO impaired both this parameter and basal respiration in a concentration-dependent manner. In addition, DetaNO stimulated extracellular acidification rate (ECAR), a surrogate marker of glycolysis, whereas L-CysNO stimulated ECAR at low concentrations and inhibited it at higher concentrations. Moreover, a temporal relationship between NO- and S-nitrosation-mediated effects on metabolism was identified, whereby NO caused a rapid impairment in mitochondrial function, which was eventually overwhelmed by S-nitrosation-dependent processes. Taken together, these results suggest that severe pharmacological nitrosative stress may differentially regulate metabolic pathways through both intracellular S-nitrosation and NO-dependent mechanisms. Moreover, these data provide insight into the role of NO and related compounds in vascular (patho)physiology.
机译:细胞信号传导途径中的关键蛋白质中的硫醇的S-亚硝化被认为是对血管(PATOO)生理学的一氧化氮(NO)依赖性控制的重要贡献者。多种代谢酶是NO和S-硝化的靶标,包括参与糖酵解和氧化磷酸化的靶。因此,重要的是要理解这些代谢途径如何通过无依赖机制整合。在此,我们使用细胞外助焊剂技术比较了NO和S-亚硝化对牛主动脉内皮细胞糖酵解和氧化磷酸化的影响,以确定常见和独特的调节点。化合物S-亚硝基-1-半胱氨酸(L-Cysno)用于引发细胞内的S-亚硝化,因为它被运输到细胞中并导致体外稳定的S-亚硝化。将其效果与无捐助者脱丹甘油(Detano)进行了比较。 Detano治疗只会降低储备呼吸能力;然而,L-Cysno以浓度依赖的方式损害该参数和基底呼吸。此外,Detano刺激的细胞外酸化速率(Ecar),糖醇分解的替代标记物,而L-Cysno以低浓度刺激eCAR并以较高浓度抑制其。此外,鉴定了NO-和S-亚硝化介导的对代谢作用之间的时间关系,从而不会引起线粒体功能的快速损伤,这最终被S-亚硝化依赖性过程所淹没。总之,这些结果表明,严重的药理学亚硝化应激可以通过细胞内S-亚硝化和无依赖性机制来差异调节代谢途径。此外,这些数据能够深入了解NO和相关化合物在血管(PATOO)生理学中的作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号