...
首页> 外文期刊>American Journal of Physiology >Nieves-González, A., Clausen, C., Layton, A.T., Layton, H.E., Moore, L.C.Transport efficiency and workload distribution in a mathematical model of the thick ascending limb.
【24h】

Nieves-González, A., Clausen, C., Layton, A.T., Layton, H.E., Moore, L.C.Transport efficiency and workload distribution in a mathematical model of the thick ascending limb.

机译:Nieves-González,A.,Clausen,C.,Layton,A.T.,Layton,H.E.,Moore,L.C.Transport效率和工作负载分布在厚的升高的数学模型中。

获取原文
获取原文并翻译 | 示例

摘要

The thick ascending limb (TAL) is a major NaCl reabsorbing site in the nephron. Efficient reabsorption along that segment is thought to be a consequence of the establishment of a strong transepithelial potential that drives paracellular Na(+) uptake. We used a multicell mathematical model of the TAL to estimate the efficiency of Na(+) transport along the TAL and to examine factors that determine transport efficiency, given the condition that TAL outflow must be adequately dilute. The TAL model consists of a series of epithelial cell models that represent all major solutes and transport pathways. Model equations describe luminal flows, based on mass conservation and electroneutrality constraints. Empirical descriptions of cell volume regulation (CVR) and pH control were implemented, together with the tubuloglomerular feedback (TGF) system. Transport efficiency was calculated as the ratio of total net Na(+) transport (i.e., paracellular and transcellular transport) to transcellular Na(+) transport. Model predictions suggest that 1) the transepithelial Na(+) concentration gradient is a major determinant of transport efficiency; 2) CVR in individual cells influences the distribution of net Na(+) transport along the TAL; 3) CVR responses in conjunction with TGF maintain luminal Na(+) concentration well above static head levels in the cortical TAL, thereby preventing large decreases in transport efficiency; and 4) under the condition that the distribution of Na(+) transport along the TAL is quasi-uniform, the tubular fluid axial Cl(-) concentration gradient near the macula densa is sufficiently steep to yield a TGF gain consistent with experimental data.
机译:厚的上升肢体(tal)是肾脏中的主要NaCl重新吸收部位。沿着该部分的有效重吸收被认为是建立强烈的Transepithelial潜力,其驱动肺细胞Na(+)摄取。考虑到TAL流出必须充分稀释的条件,我们使用了沿TAL沿TAL沿TAL的NA(+)运输效率的MULICEL数学模型,并检查确定运输效率的因素。 TAL模型由一系列的上皮细胞模型组成,代表所有主要溶质和运输途径。模型方程描述了基于大规模保护和电力避压的漏洞流动。将细胞体积调节(CVR)和pH控制的经验描述与微管间反馈(TGF)系统一起实施。计算运输效率作为总净Na(+)转运(即,瓣膜细胞和横细胞传输)与薄细胞Na(+)转运的比率。模型预测表明,1)TRANSEPITHELIAL NA(+)浓度梯度是运输效率的主要决定因素; 2)个体细胞中的CVR影响沿着TAL的净NA(+)运输的分布; 3)CVR应对TGF的反应维持腔Na(+)浓度良好地高于皮质TAL中的静态头部水平,从而防止运输效率大大降低; 4)在沿着TAL的Na(+)运输的分布是准均匀的条件下,浅局部的管状流体轴向Cl( - )浓度梯度足够陡峭,以产生与实验数据一致的TGF增益。

著录项

相似文献

  • 外文文献
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号