...
首页> 外文期刊>American Journal of Physiology >Microstructure of early embryonic aortic arch and its reversibility following mechanically altered hemodynamic load release.
【24h】

Microstructure of early embryonic aortic arch and its reversibility following mechanically altered hemodynamic load release.

机译:早期胚胎主动脉弓的微观结构及其在机械改变血液动力载荷释放后的可逆性。

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

In the embryonic heart, blood flow is distributed through a bilaterally paired artery system composed of the aortic arches (AAs). The purpose of this study is to establish an understanding of the governing mechanism of microstructural maturation of the AA matrix and its reversibility, toward the desired macroscopic vessel lumen diameter and thickness for healthy, abnormal, and in ovo repaired abnormal mechanical loading. While matrix-remodeling mechanisms were significantly different for normal versus conotruncal banding (CTB), both led to an increase in vessel lumen. Correlated with right-sided flow increase at Hamburger & Hamilton stages 21, intermittent load switching between collagen I and III with elastin and collagen-IV defines the normal process. However, decreases in collagen I, elastin, vascular endothelial growth factor-A, and fibrillin-1 in CTB were recovered almost fully following the CTB-release model, primarily because of the pressure load changes. The complex temporal changes in matrix proteins are illustrated through a predictive finite-element model based on elastin and collagen load-sharing mechanism to achieve lumen area increase and thickness increase resulting from wall shear stress and tissue strain, respectively. The effect of embryonic timing in cardiac interventions on AA microstructure was established where abnormal mechanical loading was selectively restored at the key stage of development. Recovery of the normal mechanical loading via early fetal intervention resulted in delayed microstructural maturation. Temporal elastin increase, correlated with wall shear stress, is required for continuous lumen area growth.
机译:在胚胎心脏中,血流通过由主动脉拱(AAS)组成的双侧配对动脉系统分布。本研究的目的是建立对AA基质的微观结构成熟的控制机制及其可逆性的理解,朝向健康,异常和OVO修复异常机械负荷的所需宏观血管腔直径和厚度。虽然正常与Conotruncal条带(CTB)具有显着差异的矩阵重塑机制,但导致血管内腔的增加。与汉堡和汉密尔顿阶段21的右侧流量增加相关,胶原蛋白I和III之间的间歇载荷切换与Elastin和Collagen-IV定义了正常过程。然而,在CTB释放模型之后几乎完全回收CTB中的胶原蛋白I,弹性蛋白,血管内皮生长因子-α和Fibrillin-1,主要是因为压力负荷变化。基质蛋白质中的复杂时间变化通过基于弹性蛋白和胶原蛋白的载荷分配机构的预测有限元模型来示出,以实现由壁剪切应力和组织应变产生的腔面积增加和厚度增加。建立了在AA微观结构对AA微观结构的心脏干预中的胚胎疗效的影响,其中在发育的关键阶段选择性地恢复了异常的机械载荷。通过早期胎儿干预恢复正常机械负载导致微观结构成熟的延迟。颞型弹性蛋白增加,与壁剪切应力相关,需要连续腔面积生长所需的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号