...
首页> 外文期刊>ACS applied materials & interfaces >Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles
【24h】

Parallel Large-Scale Molecular Dynamics Simulation Opens New Perspective to Clarify the Effect of a Porous Structure on the Sintering Process of Ni/YSZ Multiparticles

机译:平行的大规模分子动力学仿真打开了新的视角,以阐明多孔结构对Ni / YSZ多粒的烧结过程的影响

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Ni sintering in the Ni/YSZ porous anode of a solid oxide fuel cell changes the porous structure, leading to degradation. Preventing sintering and degradation during operation is a great challenge. Usually, a sintering molecular dynamics (MD) simulation model consisting of two particles on a substrate is used; however, the model cannot reflect the porous structure effect on sintering. In our previous study, a multi-nanoparticle sintering modeling method with tens of thousands of atoms revealed the effect of the particle framework and porosity on sintering. However, the method cannot reveal the effect of the particle size on sintering and the effect of sintering on the change in the porous structure. In the present study, we report a strategy to reveal them in the porous structure by using our multi-nanoparticle modeling method and a parallel large-scale multimillion-atom MD simulator. We used this method to investigate the effect of YSZ particle size and tortuosity on sintering and degradation in the Ni/YSZ anodes. Our parallel large-scale MD simulation showed that the sintering degree decreased as the YSZ particle size decreased. The gas fuel diffusion path, which reflects the overpotential, was blocked by pore coalescence during sintering. The degradation of gas diffusion performance increased as the YSZ particle size increased. Furthermore, the gas diffusion performance was quantified by a tortuosity parameter and an optimal YSZ particle size, which is equal to that of Ni, was found for good diffusion after sintering. These findings cannot be obtained by previous MD sintering studies with tens of thousands of atoms. The present parallel large-scale multimillion-atom MD simulation makes it possible to clarify the effects of the particle size and tortuosity on sintering and degradation.
机译:Ni / Ysz燃料电池的Ni / YSZ多孔阳极烧结改变多孔结构,导致降解。在操作期间防止烧结和降解是一个很大的挑战。通常,使用由基板上的两个颗粒组成的烧结分子动力学(MD)模拟模型;然而,该模型不能反映多孔结构对烧结的影响。在我们以前的研究中,具有数万个原子的多纳米粒子烧结建模方法揭示了粒子框架和孔隙率在烧结上的效果。然而,该方法不能揭示粒度对烧结的影响以及烧结对多孔结构变化的影响。在本研究中,我们通过使用我们的多纳米粒子建模方法和平行的大型多型原子MD模拟器来报告一种策略,以在多孔结构中揭示它们。我们使用这种方法来研究YSZ粒度和曲折对Ni / YSZ阳极烧结和降解的影响。我们的平行大规模MD模拟表明,随着YSZ粒径减小,烧结度降低。反射过电位的气体燃料扩散路径被烧结期间的孔聚结阻断。随着YSZ粒径增加,气体扩散性能的降解增加。此外,通过曲折参数量化气体扩散性能,并且在烧结后的良好扩散,确定了曲折参数和最佳的YSZ粒度。这些发现不能通过以前成千上万的原子进行了以前的MD烧结研究。本行的平行大规模多型 - 原子MD模拟使得可以阐明粒度和曲折性对烧结和降解的影响。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号