首页> 外文期刊>ACS applied materials & interfaces >Nonleachable Imidazolium-Incorporated Composite for Disruption of Bacterial Clustering, Exopolysaccharide-Matrix Assembly, and Enhanced Biofilm Removal
【24h】

Nonleachable Imidazolium-Incorporated Composite for Disruption of Bacterial Clustering, Exopolysaccharide-Matrix Assembly, and Enhanced Biofilm Removal

机译:不可脱色的咪唑鎓掺入复合材料,用于破坏细菌聚类,外偶乙醛组装和增强的生物膜去除

获取原文
获取原文并翻译 | 示例
       

摘要

Surface-grown bacteria and production of an extracellular polymeric matrix modulate the assembly of highly cohesive and firmly attached biofilms, making them difficult to remove from solid surfaces. Inhibition of cell growth and inactivation of matrix-producing bacteria can impair biofilm formation and facilitate removal. Here, we developed a novel nonleachable antibacterial composite with potent antibiofilm activity by directly incorporating polymerizable imidazolium-containing resin (antibacterial resin with carbonate linkage; ABR-C) into a methacrylate-based scaffold (ABR-modified composite; ABR-MC) using an efficient yet simplified chemistry. Low-dose inclusion of imidazolium moiety (similar to 2 wt %) resulted in bioactivity with minimal cytotoxicity without compromising mechanical integrity of the restorative material. The antibiofilm properties of ABRMC were assessed using an exopolysaccharide-matrix-producing (EPS-matrix-producing) oral pathogen (Streptococcus mutans) in an experimental biofilm model. Using high-resolution confocal fluorescence imaging and biophysical methods, we observed remarkable disruption of bacterial accumulation and defective 3D matrix structure on the surface of ABR-MC. Specifically, the antibacterial composite impaired the ability of S. mutans to form organized bacterial clusters on the surface, resulting in altered biofilm architecture with sparse cell accumulation and reduced amounts of EPS matrix (versus control composite). Biofilm topology analyses on the control composite revealed a highly organized and weblike EPS structure that tethers the bacterial clusters to each other and to the surface, forming a highly cohesive unit. In contrast, such a structured matrix was absent on the surface of ABR-MC with mostly sparse and amorphous EPS, indicating disruption in the biofilm physical stability. Consistent with lack of structural organization, the defective biofilm on the surface of ABR-MC was readily detached when subjected to low shear stress, while most of the biofilm biomass remained on the control surface. Altogether, we demonstrate a new nonleachable antibacterial composite with excellent antibiofilm activity without affecting its mechanical properties, which may serve as a platform for development of alternative antifouling biomaterials.
机译:表面种植的细菌和细胞外聚合物基质的产生调节高度内聚力和牢固连接的生物膜的组装,使得它们难以从固体表面上除去。抑制细胞生长和灭活基质的细菌可以损害生物膜形成并促进去除。在这里,我们通过直接将可聚合的咪唑鎓树脂(碳酸酯连锁; ABR-C)直接掺入甲基丙烯酸酯的支架(ABR改性复合物; ABR-MC),开发了一种具有有效抗菌性活性的新型不可抗拒的抗菌复合物。使用高效但简化的化学。低剂量包含咪唑鎓部分(类似于2wt%),导致具有最小细胞毒性的生物活性,而不损害恢复材料的机械完整性。使用在实验生物膜模型中使用外寡糖 - 基质产生(EPS-Matrix-产生)口腔病原体(Strepcocccus Mutans)评估AbRMC的抗菌性性质。使用高分辨率共聚焦荧光成像和生物物理方法,我们观察到ABL-MC表面上的细菌积累和缺陷3D矩阵结构的显着破坏。具体地,抗菌复合材料损害了S.Ulans在表面上形成有组织的细菌簇的能力,导致具有稀疏细胞积聚和减少的EPS基质(与控制复合物)减少的生物膜架构改变。对照复合材料的生物膜拓扑分析显示了一种高度有组织的和般的EPS结构,其使细菌簇彼此彼此并达到表面,形成高度粘性的单元。相反,这种结构化基质在ABR-MC的表面上不存在,主要是稀疏和无定形的EPS,表明在生物膜物理稳定性中的破坏。与结构组织缺乏一致,当受到低剪切应力时,易于脱离ABR-MC表面的缺陷生物膜,而大多数生物膜生物质保持在对照表面上。总共,我们证明了一种具有优异抗菌活性的新的非砍伐抗菌复合物,而不影响其机械性能,这可以作为开发替代防污生物材料的平台。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号