首页> 外文期刊>ACS applied materials & interfaces >Cell-Shaping Micropatterns for Quantitative Super-Resolution Microscopy Imaging of Membrane Mechanosensing Proteins
【24h】

Cell-Shaping Micropatterns for Quantitative Super-Resolution Microscopy Imaging of Membrane Mechanosensing Proteins

机译:用于定量超分辨率显微镜显微镜成像的细胞成形微图,膜机械肌肉蛋白

获取原文
获取原文并翻译 | 示例
           

摘要

Patterning cells on microcontact-printed substrates is a powerful approach to control cell morphology and introduce specific mechanical cues on a cell's molecular organization. Although global changes in cellular architectures caused by micropatterns can easily be probed with diffraction-limited optical microscopy, studying molecular reorganizations at the nanoscale demands micropatterned substrates that accommodate the optical requirements of single molecule microscopy techniques. Here, we developed a simple micropatterning strategy that provides control of cellular architectures and is optimized for nanometer accuracy single molecule tracking and three-dimensional super-resolution imaging of plasma and nuclear membrane proteins in cells. This approach, based on fibronectin microcontact printing on hydrophobic organosilane monolayers, allows evanescent wave and light-sheet microscopy of cells whilst fulfilling the stringent optical demands of point reconstruction optical microscopy. By imposing steady-state mechanical cues on cells grown in these micropatterns, we reveal nanoscale remodeling in the dynamics and the structural organizations of the nuclear envelope mechanotransducing protein emerin and of the plasma membrane mechanosensing protein caveolin-1 using single particle tracking photoactivated localization microscopy and direct stochastic optical reconstruction microscopy imaging. In addition to allowing quantitative biophysical studies of mechanoresponsive membrane proteins, this approach provides an easy means to probe mechanical regulations in cellular membranes with high optical resolution and nanometer precision.
机译:微接触印刷基材上的图案化细胞是控制细胞形态的强大方法,并在细胞的分子组织上引入特定机械提示。尽管通过衍射限制的光学显微镜可以容易地探测由微图案引起的蜂窝架构的全局变化,但是在纳米级的分子重组需要进行分子重组,所需的微型解雇材料适应单分子显微镜技术的光学要求。在这里,我们开发了一种简单的微图案策略,可提供蜂窝架构的控制,并针对细胞中的等离子体和核膜蛋白的三维超分辨率成像进行了优化。这种方法,基于疏水性有机硅烷单层上的纤连蛋白微接触印刷,允许细胞的渐逝波和光纸显微镜,同时满足点重建光学显微镜的严格光学要求。通过施加稳态机械提示在这些微图案中生长的细胞上,我们揭示了使用单颗粒跟踪的单颗粒跟踪的动态和核包膜机械化蛋白质蛋白质Caveolin-1的动力学和结构组织中的纳米级改造。直接随机光学重建显微镜成像。除了允许对力学膜蛋白的定量生物物理学研究之外,这种方法还提供了一种简单的方法,可以探测具有高光学分辨率和纳米精度的细胞膜中的机械规则。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号