...
首页> 外文期刊>ACS applied materials & interfaces >Fast and Universal Approach to Encapsulating Transition Bimetal Oxide Nanoparticles in Amorphous Carbon Nanotubes under an Atmospheric Environment Based on the Marangoni Effect
【24h】

Fast and Universal Approach to Encapsulating Transition Bimetal Oxide Nanoparticles in Amorphous Carbon Nanotubes under an Atmospheric Environment Based on the Marangoni Effect

机译:基于Marangoni效应,在大气环境下将过渡双金属氧化物纳米粒子封装过渡二金属氧化物纳米粒子的快速和通用方法

获取原文
获取原文并翻译 | 示例
           

摘要

Transition metal oxide nanoparticles capsuled in amorphous carbon nanotubes (ACNTs) are attractive anode materials of lithium-ion batteries (LIBs). Here, we first designed a fast and universal method with a hydromechanics conception which is called Marangoni flow to fabricate transition bimetal oxides (TBOs) in the ACNT composite with a better electrochemistry performance. Marangoni flows can produce a liquid column with several centimeters of height in a tube with one side immersed in the liquid. The key point to induce a Marangoni flow is to make a gradient of the surface tension between the surface and the inside of the solution. With our research, we control the gradient of the surface tension by controlling the viscosity of a solution. To show how our method could be generally used, we synthesize two anode materials such as (a) CoFe2O4@ACNTs, and (b) NiFe2O4@ACNTs. All of these have a similar morphology which is similar to 20 mu m length with a diameter of 80-100 nm for the ACNTs, and the particles (inside the ACNTs) are smaller than 5 nm. In particular, there are amorphous carbons between the nanoparticles. All of the composite materials showed an outstanding electrochemistry performance which includes a high capacity and cycling stability so that after 600 cycles the capacity changed by less than 3%.
机译:在无定形碳纳米管(ACNT)中覆盖的过渡金属氧化物纳米颗粒是锂离子电池(LIBS)的吸引力阳极材料。在这里,我们首先设计了一种快速且通用的方法,其具有更高的机力力学概念,称为Marangoni流,以制造具有更好的电化学性能的ACNT复合材料中的过渡双金属氧化物(TBOS)。 Marangoni流动可以在管中产生具有几厘米高度的液柱,一侧浸入液体中。诱导Marangoni流程的关键点是在溶液的表面和内部之间的表面张力梯度。通过我们的研究,我们通过控制溶液的粘度来控制表面张力的梯度。为了展示如何使用我们的方法,我们如何合成两个阳极材料,例如(a)cofe2o4 @ acnts,和(b)nife2O4 @ acnts。所有这些具有类似的形态,其类似于20μm的长度,直径为80-100nm的炭,颗粒(acnts内侧)小于5nm。特别是,纳米颗粒之间存在非晶碳。所有复合材料都显示出优异的电化学性能,包括高容量和循环稳定性,使得在600次循环后,容量的变化不到3%。

著录项

  • 来源
    《ACS applied materials & interfaces》 |2017年第36期|共7页
  • 作者单位

    Sun Yat Sen Zhongshan Univ State Key Lab Optoelect Mat &

    Technol Sch Mat &

    Engn Key Lab Low Carbon Chem &

    Energy Conservat Guangd Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Zhongshan Univ State Key Lab Optoelect Mat &

    Technol Sch Mat &

    Engn Key Lab Low Carbon Chem &

    Energy Conservat Guangd Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Zhongshan Univ State Key Lab Optoelect Mat &

    Technol Sch Mat &

    Engn Key Lab Low Carbon Chem &

    Energy Conservat Guangd Guangzhou 510275 Guangdong Peoples R China;

    Sun Yat Sen Zhongshan Univ State Key Lab Optoelect Mat &

    Technol Sch Mat &

    Engn Key Lab Low Carbon Chem &

    Energy Conservat Guangd Guangzhou 510275 Guangdong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Marangoni flows; surface tension; viscosity; carbon nanotubes; lithium battery; transition metal oxide;

    机译:Marangoni流动;表面张力;粘度;碳纳米管;锂电池;过渡金属氧化物;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号