...
首页> 外文期刊>ACS applied materials & interfaces >Molecular Surface Modification of NCM622 Cathode Material Using Organophosphates for Improved Li-Ion Battery Full-Cells
【24h】

Molecular Surface Modification of NCM622 Cathode Material Using Organophosphates for Improved Li-Ion Battery Full-Cells

机译:NCM622阴极材料的分子表面改性使用有机磷酸盐改进的锂离子电池全细胞

获取原文
获取原文并翻译 | 示例
           

摘要

Surface coating is a viable strategy for improving the cyclability of Li1-x(Nil-y,CoyMnz)(1-x)O-2 (NCM) cathode active materials for lithium-ion battery cells. However, both gaining synthetic control over thickness and accurate characterization of the surface shell, which is typically only a few nm thick, are considerably challenging. Here, we report on a new molecular surface modification route for NCM622 (60% Ni) using organophosphates, specifically tris(4-nitrophenyl) phosphate (TNPP) and tris(trimethylsilyl) phosphate. The functionalized NCM622 was thoroughly characterized by state-of-the-art surface and bulk techniques, such as attenuated total reflection infrared spectroscopy, X-ray photoelectron spectroscopy, and time-of-flight secondary ion mass spectrometry (ToF-SIMS), to name a few. The comprehensive ToF-SIMS-based study comprised surface imaging, depth profiling, and three-dimensional visualization. In particular, tomography is a powerful tool to analyze the nature and morphology of thin coatings and is applied, to our knowledge, for the first time, to a practical cathode active material. It provides valuable information about relatively large areas (over several secondary particles) at high lateral and mass resolution. The electrochemical performance of the different NCM622 materials was evaluated in long-term cycling experiments of full-cells with a graphite anode. The effect of surface modification on the transition-metal leaching was studied ex situ via inductively coupled plasma optical emission spectroscopy. TNPP@NCM622 showed reduced transition-metal dissolution and much improved cycling performance. Taken together, with this study, we contribute to optimization of an industrially relevant cathode active material for application in high-energy-density lithium-ion batteries.
机译:表面涂层是一种可行的策略,用于改善锂离子电池单元的Li1-X(Nil-Y,Coymnz)(1-X)O-2(NCM)阴极活性材料的可行性。然而,既有厚度和精确表征表面壳的合成控制均均相当具有挑战性。这里,我们使用有机磷酸盐,特别是Tris(4-硝基苯基)磷酸酯(TNPP)和Tris(三甲基甲硅烷基)磷酸盐来报告NCM622(60%Ni)的新分子表面改性途径。通过最先进的表面和散装技术进行彻底表征官能化的NCM622,例如衰减的全反射红外光谱,X射线光电子体光谱和飞行时间二次离子质谱(TOF-SIMS)。少数名。基于TOF-SIMS的综合性研究包括表面成像,深度分析和三维可视化。特别是,断层扫描是分析薄涂层的性质和形态的强大工具,并将我们的知识第一次应用于实际的阴极活性材料。它提供了关于高横向和质量分辨率的相对大的区域(在几个二级粒子)的宝贵信息。不同NCM622材料的电化学性能在具有石墨阳极的全细胞的长期循环实验中评价。通过电感耦合等离子体光发射光谱法研究了表面改性对过渡金属浸出的影响。 TNPP @ NCM622显示出降低的过渡金属溶解和更好的循环性能。通过这项研究,我们有助于优化工业相关的阴极活性材料,以便在高能密度锂离子电池中应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号