首页> 外文期刊>ACS applied materials & interfaces >Self-Anchored Catalyst Interface Enables Ordered Via Array Formation from Submicrometer to Millimeter Scale for Polycrystalline and Single-Crystalline Silicon
【24h】

Self-Anchored Catalyst Interface Enables Ordered Via Array Formation from Submicrometer to Millimeter Scale for Polycrystalline and Single-Crystalline Silicon

机译:自锚式催化剂界面使通过亚克滤和单晶硅的亚模数阵列形成通过阵列形成。

获取原文
获取原文并翻译 | 示例
       

摘要

Defying text definitions of wet etching, metal-assisted chemical etching (MacEtch), a solution-based, damage-free semiconductor etching method, is directional, where the metal catalyst film sinks with the semiconductor etching front, producing 3D semiconductor structures that are complementary to the metal catalyst film pattern. The same recipe that works perfectly to produce ordered array of nanostructures for single-crystalline Si (c-Si) fails completely when applied to polycrystalline Si (poly-Si) with the same doping type and level. Another long-standing challenge for MacEtch is the difficulty of uniformly etching across feature sizes larger than a few micrometers because of the nature of lateral etching. The issue of interface control between the catalyst and the semiconductor in both lateral and vertical directions over time and over distance needs to be systematically addressed. Here, we present a self anchored catalyst (SAC) MacEtch method, where a nanoporous catalyst film is used to produce nanowires through the pinholes, which in turn physically anchor the catalyst film from detouring as it descends. The systematic vertical etch rate study as a function of porous catalyst diameter from 200 to 900 nm shows that the SAC-MacEtch not only confines the etching direction but also enhances the etch rate due to the increased liquid access path, significantly delaying the onset of the mass-transport-limited critical diameter compared to nonporous catalyst c-Si counterpart. With this enhanced mass transport approach, vias on multistacks of poly-Si/SiO2 are also formed with excellent vertical registry through the polystack, even though they are separated by SiO2 which is readily removed by HF alone with no anisotropy. In addition, 320 mu m square through-Si-via (TSV) arrays in 550 mu m thick c-Si are realized. The ability of SAC-MacEtch to etch through poly/oxide/poly stack as well as more than half millimeter thick silicon with excellent site specificity for a wide range of feature sizes has significant implications for 2.5D/3D photonic and electronic device applications.
机译:透明湿法蚀刻的文本定义,金属辅助化学蚀刻(MARECH),基于溶液,无损伤的半导体蚀刻方法是定向的,其中金属催化剂薄膜与半导体蚀刻前面施加,产生互补的3D半导体结构到金属催化剂膜图案。当施加到具有相同掺杂类型和水平的多晶Si(Poly-Si)时,完全用于生产单晶Si(C-Si)的有序纳米结构纳米结构的有序阵列的相同配方克切的另一个长期挑战是由于横向蚀刻的性质,难以在大于几微米的特征尺寸均匀蚀刻。需要系统地解决催化剂和垂直方向上的催化剂和半导体之间的界面控制问题。这里,我们提出了一种自锚式催化剂(SAC)叠加方法,其中纳米多孔催化剂膜用于通过针孔生产纳米线,其又在物理上锚固催化剂膜随着下降而脱滴。作为多孔催化剂直径的函数的系统垂直蚀刻速率研究显示,囊状蛋白凝固不仅限制了蚀刻方向,而且由于增加的液体接入路径而增强了蚀刻速率,显着延迟了蚀刻与无孔催化剂C-Si对应相比,质量传递限量的临界直径。利用这种增强的质量传输方法,孔上的多硅/ SiO 2上的孔也通过聚丙棒形成优异的垂直注册表,即使它们被SiO 2分开,其单独通过HF容易地除去没有各向异性。此外,实现了550 mu m厚的C-Si中的320μm平方体通过Si-孔(TSV)阵列。囊叠蚀刻通过聚/氧化物/聚堆叠蚀刻的能力以及大于半毫米厚的硅具有出色的各个特征尺寸的出色位点特异性,对2.5D / 3D光子和电子设备应用具有显着影响。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号