...
首页> 外文期刊>ACS applied materials & interfaces >Improved Ionic Diffusion through the Mesoporous Carbon Skin on Silicon Nanoparticles Embedded in Carbon for Ultrafast Lithium Storage
【24h】

Improved Ionic Diffusion through the Mesoporous Carbon Skin on Silicon Nanoparticles Embedded in Carbon for Ultrafast Lithium Storage

机译:通过嵌入碳的硅纳米粒子上嵌入碳的型型碳皮,改善了离子扩散,以用于超快锂储存

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Because of their combined effects of outstanding mechanical stability, high electrical conductivity, and high theoretical capacity, silicon (Si) nanoparticles embedded in carbon are a promising candidate as electrode material for practical utilization in Li-ion batteries (LIBs) to replace the conventional graphite. However, because of the poor ionic diffusion of electrode materials, the low-grade ultrafast cycling performance at high current densities remains a considerable challenge. In the present study, seeking to improve the ionic diffusion, we propose a novel design of mesoporous carbon skin on the Si nanoparticles embedded in carbon by hydrothermal reaction, poly(methyl methacrylate) coating process, and carbonization. The resultant electrode offers a high specific discharge capacity with excellent cycling stability (1140 mA h g(-1) at 100 mA g(-1) after 100 cycles), superb high-rate performance (969 mA h g(-1) at 2000 mA g(-1)), and outstanding ultrafast cycling stability (532 mA h g(-1) at 2000 mA g(-1) after 500 cycles). The battery performances are surpassing the previously reported results for carbon and Si composite-based electrodes on LIBs. Therefore, this novel approach provides multiple benefits in terms of the effective accommodation of large volume expansions of the Si nanoparticles, a shorter Li-ion diffusion pathway, and stable electrochemical conditions from a faster ionic diffusion during cycling.
机译:由于它们的出色机械稳定性的综合影响,高导电性和高理论能力,嵌入在碳中的硅(Si)纳米颗粒是锂离子电池(Libs)中实际利用的电极材料的有希望的候选物,以取代传统的石墨。然而,由于电极材料的离子扩散差,高电流密度下的低级超快循环性能仍然是相当大的挑战。在本研究中,寻求改善离子扩散,我们提出了通过水热反应嵌入碳的Si纳米颗粒上的介孔碳皮的新设计,聚(甲基丙烯酸甲酯)涂布方法和碳化。所得电极提供高特异性放电容量,在100次循环后100 mA g(-1)的循环稳定性(1140 mA hg(-1)),高速率(969 mA hg(-1),2000 mA G(-1)),500次循环后,G(-1)),且优异的超快循环稳定性(532 mA Hg(-1))。电池性能超过先前报道的基于碳和Si复合电极对Libs的结果。因此,这种新方法在Si纳米颗粒的大容量膨胀,较短的锂离子扩散途径和循环期间从更快的离子扩散的稳定的电化学条件方面提供多种益处。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号