...
首页> 外文期刊>ACS applied materials & interfaces >Structure and Gas Transport at the Polymer-Zeolite Interface: Insights from Molecular Dynamics Simulations
【24h】

Structure and Gas Transport at the Polymer-Zeolite Interface: Insights from Molecular Dynamics Simulations

机译:聚合物 - 沸石界面的结构和气体传输:分子动力学模拟的见解

获取原文
获取原文并翻译 | 示例
           

摘要

We investigate the structure of polyimide (PI) at the surface of a silicalite zeolite (MFI), as part of a model hybrid organicinorganic mixed matrix membrane system, through equilibrium molecular dynamics simulations. Furthermore, we report a comparison of the adsorption and transport characteristics of pure components CO2 and CH4 in PI, MFI, and PI-MFI composite membranes. It is seen that incorporation of MFI zeolite into PI results in the formation of densified polymer layers (rigidified region) near the surface, having thickness around 1.2 nm, before bulklike behavior of the polymer is attained, contrary to empirical fits suggesting the existence of an approximately 1 mu m thick interface between the polymer and filler. This region offers an extra resistance to gas diffusion especially for the gas with a larger kinetic diameter, CH4, thus improving the CO2/CH4 kinetic selectivity in the PI-MFI composite membrane. Furthermore, we find that the kinetic selectivity of CO2 over CH4 in the rigidified region increases with temperature and that additivity of transport resistances in MFI, interfacial layer, and bulklike region of the polymer satisfactorily explains transport behavior in the composite sandwich investigated. The gas adsorption isotherms are extracted considering the dynamics and structural transitions in the PI and PI-MFI composite upon gas adsorption, and it is seen that the rigidified layer affects the gas adsorption in the polymer in the PI-MFI hybrid system. A significant increase in CO2/CH4 selectivity as well as gas permeability is observed in the PI-MFI composite membrane compared to that in the pure PI polymer membrane, which is correlated with the high selectivity of the rigidified interfacial layer in the polymer. Thus, while enhancing transport resistance, the rigidified layer is beneficial to membrane selectivity, leading to improved performance based on the Robeson upper bound plot for polymers.
机译:通过平衡分子动力学模拟,研究了硅沸石(MFI)表面的聚酰亚胺(MFI)表面的一部分,研究了硅藻土(MFI)的一部分。此外,我们报告了P​​I,MFI和PI-MFI复合膜中纯组分CO2和CH4的吸附和传输特性的比较。可以看出,在达到聚合物的散装行为之前,将MFI沸石掺入PI中,形成厚度约为1.2nm的表面附近的致密聚合物层(刚性区域),其厚度约为1.2nm。这表明存在的实证拟合聚合物和填料之间大约1μm厚的界面。该区域为气体扩散提供了额外的阻力,特别是对于具有较大动力学直径,CH4的气体,因此改善了PI-MFI复合膜中的CO2 / CH4动力学选择性。此外,我们发现,在刚性化区域中CO 2上的CO 2的动力学选择性随着温度的增加,MFI中的传输电阻,界面层和聚合物的散装区域中的输送性令人满意地解释了所研究的复合夹层中的运输行为。考虑到PI和PI-MFI复合物中的动力学和结构转变在气体吸附时提取气体吸附等温线,并且可以看出,刚性化层影响PI-MFI杂交系统中的聚合物中的气体吸附。与纯PI聚合物膜中的PI-MFI复合膜相比,在PI-MFI复合膜中观察到CO 2 / CH 4选择性以及透气性的显着增加,其与聚合物中的刚性界面层的高选择性相关。因此,在增强传输阻力的同时,刚性的层有利于膜选择性,从而提高了基于聚合物的罗伯森上界法的性能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号