首页> 外文期刊>ACS applied materials & interfaces >Origin of Conductive Nanocrystalline Diamond Nanoneedles for Optoelectronic Applications
【24h】

Origin of Conductive Nanocrystalline Diamond Nanoneedles for Optoelectronic Applications

机译:用于光电应用的导电纳米晶金刚石纳尼金刚石的起源

获取原文
获取原文并翻译 | 示例
       

摘要

Microstructural evolution of nanocrystalline diamond (NCD) nanoneedles owing to the addition of methane and nitrogen in the reactant gases is systematically addressed. It has been determined that varying the concentration of CH4 in the CH4/H-2/N-2 plasma is significant to tailor the morphology and microstructure of NCD films. While NCD films grown with 1% CH4 in a CH4/H-2/N-2 (3%) plasma contain large diamond grains, the microstructure changed considerably for NCD films grown using 5% (or 10%) CH4, ensuing in nanosized diamond grains. For 15% CH4-grown NCD films, a well-defined nanoneedle structure evolves. These NCD nanoneedle films contain spa phase diamond, sheathed with sp(2)-bonded graphitic phases, achieving a low resistivity of 90 Omega cm and enhanced field electron emission (FEE) properties, namely, a low turn-on field of 4.3 V/mu m with a high FEE current density of 3.3 mA/cm(2) (at an applied field of 8.6 V/mu m) and a significant field enhancement factor of 3865. Furthermore, a microplasma device utilizing NCD nanoneedle films as cathodes can trigger a gas breakdown at a low threshold field of 3600 V/cm attaining a high plasma illumination current density of 1.14 mA/cm(2) at an applied voltage of 500 V, and a high plasma lifetime stability of 881 min is evidenced. The optical emission spectroscopy studies suggest that the C-2, CN, and CH species in the growing plasma are the major causes for the observed microstructural evolution in the NCD films. However, the increase in substrate temperature to similar to 80 degrees C due to the incorporation of 15% CH4 in the CH4/H-2/N-2 plasma is the key driver resulting in the origin of nanoneedles in NCD films. The outstanding optoelectronic characteristics of these nanoneedle films make them suitable as cathodes in high-brightness display panels.
机译:系统地寻址纳米晶金刚石(NCD)纳米金刚石(NCD)纳米胺的微观结构演化。已经确定,在CH4 / H-2 / N-2血浆中的CH 4浓度改变为量身定制NCD膜的形态和微观结构。虽然在CH4 / H-2 / N-2(3%)等离子体中以1%CH 4生长的NCD薄膜含有大型金刚石晶粒,但是使用5%(或10%)CH 4生长的NCD薄膜的微观结构显着变化,随后在纳米中延伸钻石谷物。对于15%CH4生长的NCD薄膜,明确定义的纳尼罩结构演变。这些NCD纳米孔膜含有SPA相金刚石,用SP(2) - 合并的石墨阶段等,实现90兆CM的低电阻率和增强的现场电子发射(费用)性质,即4.3V /的低开启场)。 MU M具有3.3 mA / cm(2)的高收费电流密度(在8.6V / mu m的施加场)和显着的场增强因子为3865.此外,使用NCD纳尼孔薄膜作为阴极的显微载体器件可以触发低阈值场的气体击穿为3600V / cm的施加电压为500V的高等离子体照明电流密度为1.14mA / cm(2),并且已经证明了881分钟的高等离子体寿命稳定性。光发射光谱研究表明,生长血浆中的C-2,CN和CH物种是NCD薄膜中观察到的微观结构演化的主要原因。然而,由于在CH 4 / H-2 / N-2血浆中掺入15%CH 4,基板温度与80℃的增加是关键驱动器,导致NCD膜中的纳米孔的起源。这些纳米孔薄膜的出色光电特性使它们适合于高亮度显示板中的阴极。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号