...
首页> 外文期刊>ACS applied materials & interfaces >Nonprecious Catalyst for Three-Phase Contact in a Proton Exchange Membrane CO2 Conversion Full Cell for Efficient Electrochemical Reduction of Carbon Dioxide
【24h】

Nonprecious Catalyst for Three-Phase Contact in a Proton Exchange Membrane CO2 Conversion Full Cell for Efficient Electrochemical Reduction of Carbon Dioxide

机译:质子交换膜CO2中三相触点的非牙医催化剂,用于有效的电化学减少二氧化碳

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Development of a cost-effective and highly efficient electrocatalyst is essential but challenging in order to convert carbon dioxide to value-added chemicals at ambient conditions. In the current work, the activity of a full electrochemical cell has been demonstrated, utilizing a proton exchange membrane CO_(2) conversion cell that can selectively convert carbon dioxide to a value-added chemical (formic acid) at room temperature and pressure. A cost-effective, nonprecious-metal-based electrocatalyst, nitrogen-doped carbon nanotubes encapsulating Fe_(3)C nanoparticles (Fe_(3)[email?protected]), has been reported to exhibit superior catalytic activity toward the electrochemical CO_(2) reduction reaction (CO_(2)RR). A facile one-step synthesis procedure has been undertaken to synthesize Fe_(3)[email?protected] CO_(2) adsorption takes place via sharing of charge between the nucleophilic anchoring site (Fe_(3)C) and the electrophilic C site of CO_(2), as shown by the DFT studies. The porous architecture, unique tubular structure, high graphitization degree, and appropriate doping of the Fe_(3)C-encapsulating NCNTs allow better three-phase contact of CO_(2) (gas), H_(2)O (liquid), and catalyst (solid), which can enhance the electrocatalytic activity of the cell, as demonstrated by the experimental findings. The cell was tested under a continuous flow of CO_(2) gas and has been demonstrated to produce a good amount of formic acid (HCOOH). The production of formic acid was examined by utilizing UV–vis spectroscopy and high-performance liquid chromatography (HPLC). A series of designed experiments disclosed that the maximum yield of formic acid was as high as 90% with Fe_(3)[email?protected] as both anode and cathode catalysts. Technology to scale up the reduction procedure has also been proposed and shown in this particular work. These unique observations open a route for the development of cost-effective and highly active platinum-free electrocatalysts for the CO_(2)RR.
机译:开发成本效益和高效的电催化剂是必不可少的但具有挑战性,以便将二氧化碳转化为在环境条件下的增值化学品。在当前的工作中,已经证明了全电化学电池的活性,利用质子交换膜CO_(2)转化电池,其可以在室温和压力下选择性地将二氧化碳转化为增值的化学(甲酸)。据报道,据报道,一种经济效益,非普烈金属基电催化剂,氮掺杂碳纳米管(Fe_(3)[ema_(3)[email x保护]),向电化学CO_表现出优异的催化活性(2 )还原反应(CO_(2)RR)。已经进行了一个容易的一步合成程序,以合成FE_(3)[电子邮件吗?受保护的] CO_(2)吸附通过在亲核锚定部位(FE_(3)C)和电泳C网站之间的电荷分享CO_(2),如DFT研究所示。多孔架构,独特的管状结构,高图石化程度和Fe_(3)C封装NCNT的适当掺杂允许CO_(2)(气体),H_(2)O(液体)的更好三相触点,以及催化剂(固体),其可以增强细胞的电催化活性,如实验结果所证明的那样。在连续的CO_(2)气体的连续流动下测试电池,已经证明了产生良好量的甲酸(HCOOH)。通过利用UV-Vis光谱和高性能液相色谱(HPLC)来检查甲酸的生产。公开了一系列设计的实验,即甲酸的最大产量高达90%,用Fe_(3)[emailα保护]作为阳极和阴极催化剂。扩大减少过程的技术也已经提出并显示在这项特殊的工作中。这些独特的观察结果为CO_(2)RR开发了开发成本效益和高活跃的铂免催化剂的路线。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号