...
首页> 外文期刊>ACS applied materials & interfaces >Ag-Bridged Z-Scheme 2D/2D Bi5FeTi3O15/g-C3N4 Heterojunction for Enhanced Photocatalysis: Mediator-Induced Interfacial Charge Transfer and Mechanism Insights
【24h】

Ag-Bridged Z-Scheme 2D/2D Bi5FeTi3O15/g-C3N4 Heterojunction for Enhanced Photocatalysis: Mediator-Induced Interfacial Charge Transfer and Mechanism Insights

机译:Ag-Bridged Z-Scheme 2D / 2D Bi5Feti3O15 / G-C3N4异质结来增强光催化:介质诱导的界面电荷转移和机制见解

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Heterojunction photocatalysts have attracted widespread interest in photocatalysis because of their high-efficiency interfacial charge-transfer characteristics of nanoarchitectures. In this study, Ag-bridged 2D/2D Bi5FeTi3O15/ultrathin g-C(3)N(4 )Z-scheme heterojunction photocatalysts with powerful interfacial charge transfer has been synthesized via a facile ultrasound method coupled with a photoreduction strategy for efficient photocatalytic degradation of antibiotics. The morphology analysis displays that the bridged Ag nanoparticles were anchored on the interface of layered Bi5FeTi3O15 and ultrathin g-C3N4 nanosheets. Owing to its unique 2D/2D ternary heterostructure, the Bi5FeTi3O15/2%Ag/10% ultrathin g-C3N4 composite exhibited the best tetracycline degradation performance under visible-light and simulated solar irradiation. Meanwhile, the intermediates and degradation pathways were proposed by a liquid-phase mass spectrometry system. Characterizations and density functional theory studies together verify that the matched band structure of Bi5FeTi3O15 and g-C3N4 could induce a superfast Z-scheme interfacial charge-transfer path. More importantly, bridged Ag nanoparticles in the 2D/2D heterojunction extended the light absorption range and prolonged the lifetime of photogenerated electron-holes induced by Bi5FeTi3O15. This work affords a promising approach for designing multicomponent Z-scheme heterojunction photocatalysts for highly efficient photocatalytic application.
机译:由于其高效的界面电荷 - 转移特性,异质结光催化剂引起了光催化的广泛兴趣。在本研究中,通过耦合与光电催化降解抗生素的光催化降解的抗诊断策略,合成了具有强大的界面电荷转移的Ag-桥接2D / 2D Bi5Feti3O15 / Ulthathin GC(3)N(4)Z-方案异质结光催化剂。 。形态学分析显示桥接Ag纳米粒子锚定在分层Bi5Feti3O15和超薄G-C3N4纳米晶片的界面上。由于其独特的2D / 2D三元异性结构,Bi5Feti3O15 / 2%Ag / 10%超薄G-C3N4复合材料在可见光和模拟的太阳辐射下表现出最佳的四环素降解性能。同时,通过液相质谱系统提出中间体和降解途径。特征和密度泛函理论研究共同验证了Bi5Feti3O15和G-C3N4的匹配带结构可以诱导超快速Z方案界面电荷转移路径。更重要的是,2D / 2D异质结中的桥接Ag纳米颗粒延长了光吸收范围,延长了Bi5Feti3O15诱导的光生电电子孔的寿命。这项工作提供了一种有希望的方法,用于设计多组分Z方案异质结光催化剂,用于高效的光催化应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号