首页> 外文期刊>ACS applied materials & interfaces >Secondary Phase Formation Mechanism in the Mo-Back Contact Region during Sulfo-Selenization Using a Metal Precursor: Effect of Wettability between a Liquid Metal and Substrate on Secondary Phase Formation
【24h】

Secondary Phase Formation Mechanism in the Mo-Back Contact Region during Sulfo-Selenization Using a Metal Precursor: Effect of Wettability between a Liquid Metal and Substrate on Secondary Phase Formation

机译:使用金属前体在磺硒化期间Mo-Back接触区域中的二次相形成机制:二次相形成液态金属与基材之间的润湿性的影响

获取原文
获取原文并翻译 | 示例
       

摘要

Recently, highly efficient CZTS solar cells using pure metal precursors have been reported, and our group created a cell with 12.6% efficiency, which is equivalent to the long-lasting world record of IBM. In this study, we report a new secondary phase formation mechanism in the back contact interface. Previously, CZTSSe decomposition with Mo has been proposed to explain the secondary phase and void formation in the Mo-back contact region. In our sulfo-selenization system, the formation of voids and secondary phases is well explained by the unique wetting properties of Mo and the liquid metal above the peritectic reaction (eta-Cu6Sn5 - epsilon-Cu3Sn + liquid Sn) temperature. Good wetting between the liquid Sn and the Mo substrate was observed because of strong metallic bonding between the liquid metal and Mo layer. Thus, some epsilon-Cu3Sn and liquid Sn likely remained on the Mo layer during the sulfo-selenization process, and Cu-SSe and Cu-Sn-SSe phases formed on the Mo side. When bare soda lime glass (SLG) was used as a substrate, nonwetting adhesion was observed because of weak van der Walls interactions between the liquid metal and substrate. The Cu Sn alloy did not remain on the SLG surface, and Cu-SSe and Cu-Sn-SSe phases were not observed after the final sulfo-selenization process. Additionally, Mo/SLG substrates coated with a thin Al2O3 layer (1-5 nm) were used to control secondary phase formation by changing the wetting properties between Mo and the liquid metal. A 1 nm Al2O3 layer was enough to control secondary phase formation at the CZTSSe/Mo and void/Mo interfaces, and a 2 nm Al2O3 layer was enough to perfectly control secondary phase formation at the Mo interface and Mo-SSe formation.
机译:最近,已经报道了使用纯金属前体的高效CZTS太阳能电池,我们的组创建了一个12.6%效率的细胞,这相当于IBM的长期世界纪录。在这项研究中,我们在后面接触界面中报告了一种新的二级相位机制。以前,已经提出了与Mo的CZTSSE分解以解释Mo-Back接触区域中的二次相和空隙形成。在我们的磺硒化系统中,通过晶体和液体金属的独特润湿性能(ETA-CU6SN5 - EPSILON-CU3SN +液态Sn)温度很好地解释了空隙和二次相的形成很好。由于液态金属和MO层之间的强金属粘合,观察到液体Sn和Mo衬底之间的良好润湿。因此,在磺酰硒化方法期间,一些ePsilon-Cu3Sn和液体Sn可能残留在Mo层上,并且在Mo侧形成Cu-SSE和Cu-Sn-SSE相。当裸苏打石灰玻璃(SLG)用作底物时,由于液态金属和基材之间的范德壁的相互作用弱,观察到非纯化粘附。 Cu Sn合金不保留在SLG表面上,并且在最终磺酰硒化过程之后未观察到Cu-SSE和Cu-SN-SSE相。另外,通过改变Mo和液态金属之间的润湿性能,使用涂有薄Al2O3层(1-5nm)的Mo / SLG底物来控制二次相形成。 1nM Al 2 O 3层足以控制CZTSSE / Mo和空隙/ Mo界面处的二次相形成,并且2nm Al 2 O 3层足以在Mo接口和Mo-SSE形成时完全控制二次相形成。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号