首页> 外文期刊>ACS applied materials & interfaces >Design of Microporous Material HUS-10 with Tunable Hydrophilicity, Molecular Sieving, and CO2 Adsorption Ability Derived from Interlayer Silylation of Layered Silicate HUS-2
【24h】

Design of Microporous Material HUS-10 with Tunable Hydrophilicity, Molecular Sieving, and CO2 Adsorption Ability Derived from Interlayer Silylation of Layered Silicate HUS-2

机译:具有可调谐亲水性,分子筛和二氧化碳吸附能力的微孔材料HUS-10的设计衍生自层状硅酸盐HUS-2的层间甲硅烷基化合物

获取原文
获取原文并翻译 | 示例
           

摘要

The attractive properties of zeolites, which make them suitable for numerous applications for the energy and chemical industries and for life sciences, are derived from their crystalline framework structures. Herein, we describe the rational synthesis of a microporous material, HUS-10, utilizing a layered silicate precursor, HUS-2, as a structural building unit. For the ordered micropores to be formed, interlayer pillars that supported the original silicate layer of HUS-2 were immobilized through the interlayer silylation of silanol groups with trichlor- omethylsilane and a subsequent dehydration-condensation reaction of the hydroxyl groups on the preintroduced tetrahedral units. An actual molecular sieving ability, enabling the adsorption of molecules smaller than ethane, was confirmed in the ordered micropores of HUS-10. The hydrophilic adsorption could also be controlled by changing the number of methyl and hydroxyl groups in the immobilized interlayer pillars. In addition, when the adsorption behaviors of CO2, CH4, and N2 on HUS-10 were compared to those on siliceous MFI and CDO zeolites with approximately the same pore diameter, the CO2 adsorption capacity of HUS-10 was comparable. Conversely, because of the adsorption inhibition of CH4 and Na HUS-10 exhibited larger CO2/CH4 and CO2/N2 adsorption ratios relative to those of MFI and CDO zeolites. These results reveal that the unique microporous framework structure presented by the rational structural design using the layered silicate precursor HUS-2 has the potential to separate CO2 from gas mixtures.
机译:沸石的有吸引力的性质,使它们适用于许多用于能量和化学工业和生命科学的应用,源自其晶体框架结构。在此,我们描述了使用层状硅酸盐前体HUS-2的微孔材料,HUS-10的合理合成,作为结构构建单元。对于要形成的有序的微孔,将支撑的HUS-2的原始硅酸盐层的层间柱通过具有三氯亚甲基硅烷的硅烷醇基团的中间层甲硅烷基化和羟基在前介质的四面体单元上的随后的脱水 - 缩合反应。在HUS-10的有序微孔中确认了实际分子筛分能力,使得小于乙烷的分子的吸附。还可以通过改变固定的层间柱中的甲基和羟基的数量来控制亲水性吸附。另外,当使用大致相同孔径的硅质MFI和CDO沸石上的CO 2,CH4和N2的吸附行为与硅质MFI和CDO沸石的吸附行为进行比较时,HUS-10的CO 2吸附能力相当。相反,由于CH4和NA HUS-10的吸附抑制表现出相对于MFI和CDO沸石的较大CO 2 / CH 4和CO 2 / N 2吸附比。这些结果表明,使用层状硅酸盐前体HUS-2的合理结构设计所呈现的独特的微孔框架结构具有与气体混合物分离的电量。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号