首页> 外文期刊>ACS applied materials & interfaces >Quenching Thermal Transport in Aperiodic Superlattices: A Molecular Dynamics and Machine Learning Study
【24h】

Quenching Thermal Transport in Aperiodic Superlattices: A Molecular Dynamics and Machine Learning Study

机译:非周期性超晶格中的淬火热运输:分子动力学和机器学习研究

获取原文
获取原文并翻译 | 示例
       

摘要

Random multilayer (RML) structures, or aperiodic superlattices, can localize coherent phonons and therefore exhibit drastically reduced lattice thermal conductivity compared to their superlattice counterparts. The optimization of RML structures is essential for obtaining ultralow thermal conductivity, which is critical for various applications such as thermoelectrics and thermal barrier coatings. A higher degree of disorder in RMLs will lead to stronger phonon localization and, correspondingly, a lower lattice thermal conductivity. In this work, we identified several essential parameters for quantifying the disorder in layer thicknesses of RMLs. We were able to correlate these disorder parameters with thermal conductivity, as confirmed by classical molecular dynamics simulations of conceptual Lennard-Jones RMLs. Moreover, we have shown that these parameters are effective as features for physics-based machine learning models to predict the lattice thermal conductivity of RMLs with improved accuracy and efficiency.
机译:随机多层(RML)结构或非周期性超级图案可以定位相干声子,因此与其超晶格对应物相比,晶格导热率大大降低。 RML结构的优化对于获得超级导热率至关重要,这对于各种应用诸如热电和热阻挡涂层至关重要。 RMLS中的更高程度的疾病将导致声子定位更强,相应地,较低的晶格导热系数。在这项工作中,我们确定了用于量化RML层厚度的几个基本参数。我们能够将这些紊乱参数与导热率相关联,如概念Lennard-Jones RML的经典分子动力学模拟所确认。此外,我们已经表明,这些参数作为基于物理的机器学习模型的特征是有效的,以预测RML的晶格导热性,提高精度和效率。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号