首页> 外文期刊>ACS applied materials & interfaces >Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration
【24h】

Three-Dimensional Printing Biologically Inspired DNA-Based Gradient Scaffolds for Cartilage Tissue Regeneration

机译:用于软骨组织再生的三维印刷生物学激发DNA的梯度支架

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Cartilage damage caused by aging, repeated overloading, trauma, and diseases can result in chronic pain, inflammation, stiffness, and even disability. Unlike other types of tissues (bone, skin, muscle, etc.), cartilage tissue has an extremely weak regenerative capacity. Currently, the gold standard surgical treatment for repairing cartilage damage includes autografts and allografts. However, these procedures are limited by insufficient donor sources and the potential for immunological rejection. After years of development, engineered tissue now provides a valuable artificial replacement for tissue regeneration purposes. Three-dimensional (3D) bioprinting technologies can print customizable hierarchical structures with cells. The objective of the current work was to prepare a 3D-printed three-layer gradient scaffold with lysine-functionalized rosette nanotubes (RNTK) for improving the chondrogenic differentiation of adipose-derived mesenchymal stem cells (ADSCs). Specifically, biologically inspired RNTKs were utilized in our work because they have unique surface chemistry and biomimetic nanostructure to improve cell adhesion and growth. Different ratios of gelatin methacrylate (GelMA) and poly(ethylene glycol) diacrylate (PEGDA) were printed into a three-layer GelMA-PEGDA gradient scaffold using a stereolithography-based printer, followed by coating with RNTKs. The pores and channels (similar to 500 mu m) were observed in the scaffold. It was found that the population of ADSCs on the GelMA-PEGDA-RNTK scaffold increased by 34% compared to the GelMA-PEGDA scaffold (control). Moreover, after 3 weeks of chondrogenic differentiation, collagen II, glycosaminoglycan, and total collagen synthesis on the GelMA-PEGDA-RNTK scaffold significantly respectively increased by 59%, 71%, and 60%, as compared to the control scaffold. Gene expression of collagen II al, SOX 9, and aggrecan in the ADSCs growing on the GelMA-PEGDA-RNTK scaffold increased by 79%, 52%, and 47% after 3 weeks, compared to the controls, respectively. These results indicated that RNTKs are a promising type of nanotubes for promoting chondrogenic differentiation, and the present 3D-printed three-layer gradient GelMA-PEGDA-RNTK scaffold shows considerable promise for future cartilage repair and regeneration.
机译:老化,重复过载,创伤和疾病引起的软骨损伤可能导致慢性疼痛,炎症,僵硬,甚至残疾。与其他类型的组织(骨骼,皮肤,肌肉等)不同,软骨组织具有极其弱的再生能力。目前,用于修复软骨损伤的黄金标准手术治疗包括自体移植和同种异体移植物。然而,这些程序受到捐助源不足的限制和免疫抑制的可能性。经过多年的发展,工程组织现在为组织再生目的提供了有价值的人工替代品。三维(3D)生物监测技术可以使用单元格打印可自定义的分层结构。目前工作的目的是制备具有赖氨酸官能化玫瑰烯库(RNTK)的3D印刷的三层梯度支架(RNTK),用于改善脂肪衍生的间充质干细胞(ADSC)的软骨形成分化。具体地,在我们的工作中使用生物学激发的RNTK,因为它们具有独特的表面化学和仿生纳米结构,以改善细胞粘附和生长。使用立体基石的打印机将甲基丙烯酸明胶(GELMA)和聚(乙二醇)和聚(乙二醇)二丙烯酸酯(PEGDA)的不同比率印刷到三层凝胶-PEGDA梯度支架中,然后用RNTKS涂覆。在支架中观察到孔和通道(类似于500μm)。结果发现,与Gelma-PEGDA支架(对照)相比,Gelma-PEGDA-RNTK支架上的ADSCs群体增加了34%。此外,与对照支架相比,胶原II,糖浆II,糖甘油蛋白和总胶原蛋白合成显着分别分别增加59%,71%和60%。与对照相比,胶原蛋白II Al,SOX 9和Adc and在凝胶-PEGDA-RNTK支架上生长的ADSC中的基因表达增加了79%,52%和47%。这些结果表明,RNTKS是用于促进软骨内分化的有望类型的纳米管,并且目前的3D印刷的三层梯度Gelma-PEGDA-RNTK支架表示未来软骨修复和再生的相当大的希望。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号