首页> 外文期刊>ACS applied materials & interfaces >Concurrently Realizing Geometric Confined Growth and Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn-Air Battery
【24h】

Concurrently Realizing Geometric Confined Growth and Doping of Transition Metals within Graphene Hosts for Bifunctional Electrocatalysts toward a Solid-State Rechargeable Micro-Zn-Air Battery

机译:在石墨烯宿主内同时实现几何狭窄的生长和掺杂过渡金属,用于双功能电催化剂朝向固态可充电的微Zn空气电池

获取原文
获取原文并翻译 | 示例
       

摘要

The simultaneous realization of confined growth and doping of transition metals within carbon hosts promises to deliver unusual bifunctional catalytic activity but still remains challenging due to the difficulty in achieving synchronous nucleation and diffusion of metallic ions in a single synthesis step. Herein, we present a simple synthesis strategy capable of concurrently realizing geometric confined growth and doping of transition metals within graphene hosts, demonstrated in Co,N-codoped graphene-confined FeNi nanoparticles (Co,N-GN-FeNi). The obtained Co,N-GN-FeNi can take full advantage of the hierarchy of interactions between the confined-grown FeNi nanoparticles (for high oxygen evolution reaction (OER) activity) and the Co,N-codoped graphene hosts (for high oxygen reduction reaction (ORR) activity). The overall structure is a rationally designed synergy that simultaneously realizes (i) adequate exposure of electroactive sites, (ii) effective protection against corrosion/aggregation of FeNi nanoparticles, and (iii) rapid transport of ions/electrons between the interfaces. As a result, Co,N-GN-FeNi exhibits excellent bifunctional electrocatalytic activity relying on a low ORR/OER subtraction (Delta E = 0.81 V). Subsequent combination with a planar electrode configuration and a solid polymer electrolyte further demonstrates the utilization of Co,N-GN-FeNi as air cathode bifunctional electrocatalysts in a solid-state rechargeable micro-Zn-air battery (SR-MZAB), which exhibits a large open-circuit voltage of 1.39 V, a high power density/specific capacity of 62.3 mW cm(-2)/763 mAh g(-1), excellent durability (126 cycles/42 h), and mechanical flexibility. This work demonstrates an effective synthesis strategy for concurrently realizing geometric confined growth and doping of transition metals within carbon hosts, for enhanced bifunctional catalytic activity toward novel SR-MZABs with high energy efficiency, security, and flexibility for wearable micropower sources.
机译:同时实现碳宿主内狭窄的过渡金属的狭窄生长和掺杂,承诺提供不寻常的双官能催化活性,但由于在单个合成步骤中难以实现了金属离子的同步成核和扩散而仍然仍然具有挑战性。在此,我们介绍了一种简单的合成策略,其能够在石墨烯宿主内同时实现石墨烯宿主内的几何狭窄的生长和掺杂,在CO,N型石墨烯 - 限制Feni纳米粒子(CO,N-Gn-Feni)中。所得CO,N-GN-FENI可以充分利用限制生长的FENI纳米颗粒(用于高氧化反应(OER)活性)和CO,N型编号石墨烯宿主(用于高氧气减少)之间的相互作用层次反应(ORR)活性)。整体结构是合理设计的协同作用,同时实现(i)充足的电活性位点暴露,(ii)有效地保护Feni纳米粒子的腐蚀/聚集,(iii)界面之间的离子/电子快速运输离子/电子。结果,CO,N-GN-FENI表现出优异的双功能电催化活性,依赖于低ORR / OER减法(DELTA E = 0.81V)。随后与平面电极构造和固体聚合物电解质的组合进一步证明了在固态可充电的微Zn-空气电池(SR-MZAB)中的空气阴极双官能电池(SR-MZAB)的使用CO,N-Gn-Feni作为空气阴极双功能电催化剂。大型开路电压为1.39 V,高功率密度/特定容量为62.3 mW cm(-2)/ 763 mah g(-1),优异的耐久性(126次循环/ 42小时)和机械柔韧性。该工作证明了一种有效的合成策略,用于同时实现碳宿主内的几何狭窄的生长和过渡金属的掺杂,用于增强具有高能量效率,安全性和可穿戴微电子源的安全性,安全性和灵活性的新型SR-MZAB的双官能催化活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号