首页> 外文期刊>ACS applied materials & interfaces >Template-Free Synthesis of Mesoporous beta-MnO2 Nanoparticles: Structure, Formation Mechanism, and Catalytic Properties
【24h】

Template-Free Synthesis of Mesoporous beta-MnO2 Nanoparticles: Structure, Formation Mechanism, and Catalytic Properties

机译:不含介孔β-mnO2纳米颗粒的无模板合成:结构,形成机制和催化性质

获取原文
获取原文并翻译 | 示例
           

摘要

Mesoporous beta-MnO2 nanoparticles were synthesized by a template-free low-temperature crystallization of Mn4+ precursors (low-crystallinity layer-type Mn4+ oxide, c-distorted H+-birnessite) produced by the reaction of MnO4- and Mn2+. The Mn starting materials, pH of the reaction solution, and calcination temperatures significantly affect the crystal structure, surface area, porous structure, and morphology of the manganese oxides formed. The pH conditions during the precipitation of Mn4+ precursors are important for controlling the morphology and porous structure of beta-MnO2. Nonrigid aggregates of platelike particles with slitlike pores (beta-MnO2-1 and -2) were obtained from the combinations of NaMnO4/MnSO(4 )and NaMnO4/Mn(NO3)(2), respectively. On the other hand, spherelike particles with ink-bottle shaped pores (beta-MnO2-3) were formed in NaMnO4/Mn(OAc)(2) with pH adjustment (pH 0.8). The specific surface areas for beta-MnO2-1, -2, and -3 were much higher than those for nonporous beta-MnO2 nanorods synthesized using a typical hydrothermal method (beta-MnO2-HT). On the other hand, c-distorted H+-birnessite precursors with a high interlayer metal cation (Na+ and K+) content led to the formation of alpha-MnO2 with a 2 x 2 tunnel structure. These mesoporous beta-MnO2 materials acted as effective heterogeneous catalysts for the aerobic oxidation of 5-hydroxymethylfurfural (HMF) to 2,5-furandicarboxylic acid (FDCA) as a bioplastic monomer and for the transformation of aromatic alcohols to the corresponding aldehydes, where the catalytic activities of beta-MnO2-1, -2, and -3 were approximately 1 order of magnitude higher than that of beta-MnO2-HT. beta-MnO2-3 exhibited higher catalytic activity (especially for larger molecules) than the other beta-MnO2 materials, and this is likely attributed to the nanometer-sized spaces.
机译:通过MnO 4-和Mn2 +的反应产生的Mn4 +前体(低结晶度层型Mn4 +氧化物,C扭曲的H + -Birnierity)的无模块的低温结晶合成了介孔β-MnO 2纳米颗粒。 Mn原料,反应溶液的pH和煅烧温度显着影响晶体结构,表面积,多孔结构和形成的锰氧化物的形态。 Mn4 +前体沉淀过程中的pH条件对于控制β-mnO 2的形态和多孔结构是重要的。从NamnO 4 / MnSO(4)和NamnO 4 / Mn(NO 3)(2)的组合中获得絮状孔(β-MNO2-1和-2)的塑料颗粒的非填充聚集体。另一方面,用pH调节(pH 0.8),在NamnO 4 / Mn(OAC)(2)中形成具有墨水瓶形孔(Beta-MnO 2 -3)的球形颗粒。 β-MnO 2-1,-2和-3的比表面积远高于使用典型的水热法(β-mnO2-HT)合成的无孔β-mnO2纳米棒。另一方面,具有高层间金属阳离子(Na +和K +)含量的C扭曲的H + -Birniedite前体导致形成具有2×2隧道结构的α-mnO2。这些中孔β-mnO 2材料用作5-羟甲基糠醛(HMF)至2,5-呋喃二羧酸(FDCA)的有效的异质催化剂作为生物塑料单体,并用于将芳族醇的转化为相应的醛,其中β-mNO2-1,-2和-3的催化活性比β-mnO 2-HT高约1级。 β-MnO2-3表现出比其他β-MnO 2材料更高的催化活性(特别是对于较大的分子),并且这可能归因于纳米尺寸的空间。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号