首页> 外文期刊>ACS applied materials & interfaces >CelluPhot: Hybrid Cellulose-Bismuth Oxybromide Membrane for Pollutant Removal
【24h】

CelluPhot: Hybrid Cellulose-Bismuth Oxybromide Membrane for Pollutant Removal

机译:细胞:杂交纤维素 - 铋氧杂膜用于污染物去除

获取原文
获取原文并翻译 | 示例
       

摘要

The simultaneous removal of organic and inorganic pollutants from wastewater is a complex challenge and requires usually several sequential processes. Here, we demonstrate the fabrication of a hybrid material that can fulfill both tasks: (i) the adsorption of metal ions due to the negative surface charge, and (ii) photocatalytic decomposition of organic compounds. The bioinorganic hybrid membrane consists of cellulose fibers to ensure mechanical stability and of Bi4O5Br2/BiOBr nanosheets. The composite is synthesized at low temperature of 115 degrees C directly on the cellulose membrane (CM) in order to maintain the carboxylic and hydroxyl groups on the surface that are responsible for the adsorption of metal ions. The composite can adsorb both Co(II) and Ni(II) ions and the kinetic study confirmed a good agreement of experimental data with the pseudo-second-order equation kinetic model. CM/Bi4O5Br2/BiOBr showed higher affinity to Co(II) ions than to Ni(II) ions from diluted aqueous solutions. The bioinorganic composite demonstrates a synergistic effect in the photocatalytic degradation of rhodamine B (RhB) by exceeding the removal efficiency of single components. The fabrication of the biologic-inorganic interface was confirmed by various analytical techniques including scanning electron microscopy (SEM), scanning transmission electron microscopy with energy dispersive X-ray spectroscopy (STEM EDX) mapping, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The presented approach for controlled formation of the bioinorganic interface between natural material (cellulose) and nanoscopic inorganic materials of tailored morphology (Bi-O-Br system) enables the significant enhancement of materials functionality.
机译:来自废水的同时除去有机和无机污染物是复杂的挑战,并且通常需要几种连续过程。在这里,我们证明了可以满足两个任务的混合材料的制造:(i)由于负面电荷而对金属离子的吸附,以及(ii)有机化合物的光催化分解。生物碳杂交膜由纤维素纤维组成,以确保机械稳定性和BI4O5BR2 / BIOBR纳米晶片。将复合材料直接在115℃的低温下在纤维素膜(cm)上合成,以将羧酸和羟基保持在负责金属离子的吸附的表面上。复合材料可以吸收CO(II)和Ni(II)离子,动力学研究证实了与伪二阶方向动力学模型的实验数据的良好协议。 CM / BI4O5BR2 / BIOBR向CO(II)离子的亲和力较高而不是来自稀释水溶液的Ni(II)离子。通过超过单一组分的去除效率,生物能组合材料证明了罗丹明B(RHB)的光催化降解的协同效应。通过各种分析技术确认生物无机界面的制造,包括扫描电子显微镜(SEM),扫描透射电子显微镜,具有能量分散X射线光谱(STEM EDX)映射,X射线衍射(XRD)和X-光线光电子体光谱(XPS)。所提出的用于量体(纤维素)和纳米镜的定制形态(BI-O-BR系统)之间的生物碱性界面的控制形成的方法能够显着提高材料功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号