...
首页> 外文期刊>ACS applied materials & interfaces >Engineering the Cellulose Fiber Interface in a Polymer Composite by Mussel-Inspired Adhesive Nanoparticles with Intrinsic Stress-Sensitive Responsivity
【24h】

Engineering the Cellulose Fiber Interface in a Polymer Composite by Mussel-Inspired Adhesive Nanoparticles with Intrinsic Stress-Sensitive Responsivity

机译:用贻贝鼓励粘合剂纳米粒子在聚合物复合材料中用含有内在应力敏感响应性的工程纤维素纤维界面

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The interface between the fiber and matrix plays a key role in polymer composite performance and is adapted by chemical modification of the fiber surface. In this study, biomimetic adhesive nanoparticles formed by the self-assembly of polymer-peptide amphiphiles with a polydiacetelyene tail and local presentation of 3-hydroxyphenylalanine or DOPA adhesive groups at the outer surface are adsorbed on cellulose fiber surfaces for (i) probing the nanoscale adhesion in combination with a functionalized atomic force microscopy tip and (ii) evaluating the macroscale adhesion by single-fiber pull out tests from a solvent cast cellulose/poly(methyl methacrylate) composite. The interface properties are altered by changing the structure of the nanoparticles into either vesicular or planar shapes depending on the number of incorporated amphiphiles with adhesive groups and the nanoparticle concentration at the cellulose fiber surface. Based on nanoscale adhesive measurements, the adhesion force on modified cellulose fibers increases as a function of the nanoparticle concentration and is higher for the vesicular than for the planar nanoparticle structures. However, the local presentation and number of adhesive groups seems to rule over the surface roughness effects. From macrosale tests, an optimum concentration of adhesive vesicles provides maximum interface strength, while the formation of nanoparticle multilayers at higher concentrations results in lower interface adhesion. In addition, the intrinsic fluorescent properties of the adhesive vesicles under mechanical stress provide a unique tool to evaluate local failure and stress concentrations in the fiber/matrix interface. The incorporation of both adhesive and sensitive properties and versatility of the adhesive functional group may be an attractive strategy for the surface modification of fiber-reinforced composites in general.
机译:纤维和基质之间的界面在聚合物复合性能中起着关键作用,并通过纤维表面的化学改性来调整。在该研究中,通过具有多迪乙二醇尾状尾部的聚合物 - 肽两亲物的自组装形成的仿生粘合剂纳米颗粒和外表面上的3-羟基苯丙氨酸或DOPA粘合剂组的局部呈现探测(i)探测纳米级的纤维素纤维表面上结合官能化原子力显微镜尖端和(ii)通过单纤维从溶剂铸纤维素/聚(甲基丙烯酸甲酯)复合材料中的单纤维拔出试验来评估Macroscale粘附性的(ii)。根据具有粘合剂基团的掺入的两亲物质的数量和纤维素纤维表面的纳米颗粒浓度,通过将纳米颗粒的结构改变为囊状或平面形状来改变界面性质。基于纳米级粘合剂测量,改性纤维素纤维上的粘附力随着纳米颗粒浓度的函数而增加,并且对于平面纳米颗粒结构而言更高。然而,局部呈现和粘合剂组的数量似乎统治了表面粗糙度效应。从宏观测试中,粘性囊泡的最佳浓度提供最大界面强度,而在较高浓度下形成纳米颗粒多层的形成导致较低的界面粘附。此外,在机械应力下的粘合剂囊泡的内在荧光特性提供了一种独特的工具,以评估纤维/基质界面中的局部失效和应力浓度。粘合剂官能团的粘合剂和敏感性和敏感性的掺入通常可以是纤维增强复合材料的表面改性的有吸引力的策略。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号