...
首页> 外文期刊>ACS applied materials & interfaces >Stability-Controllable Self-Immobilization of Carbonic Anhydrase Fused with a Silica-Binding Tag onto Diatom Biosilica for Enzymatic CO2 Capture and Utilization
【24h】

Stability-Controllable Self-Immobilization of Carbonic Anhydrase Fused with a Silica-Binding Tag onto Diatom Biosilica for Enzymatic CO2 Capture and Utilization

机译:碳酸酐酶的稳定可控自固定融合在二氧化硅结合标签上融合到硅藻生物硅藻土上以进行酶促二氧化碳捕获和利用

获取原文
获取原文并翻译 | 示例

摘要

Exploiting carbonic anhydrase (CA), an enzyme that catalyzes the hydration of CO2, is a powerful route for ecofriendly and cost-effective carbon capture and utilization. For successful industrial applications, the stability and reusability of CA should be improved, which necessitates enzyme immobilization. Herein, the ribosomal protein L2 (Si-tag) from Escherichia coli was utilized for the immobilization of CA onto diatom biosilica, a promising renewable support material. The Si-tag was redesigned (L2NC) and genetically fused to CA from the marine bacterium Hydrogenovibrio marinus (hmCA). One-step self-immobilization of hmCA-L2NC onto diatom biosilica by simple mixing was successfully achieved via Si-tag-mediated strong binding, showing multilayer adsorption with a maximal loading of 1.4 wt %. The immobilized enzyme showed high reusability and no enzyme leakage even under high temperature conditions. The activity of hmCA-L2NC was inversely proportional to the enzyme loading, while the stability was directly proportional to the enzyme loading. This discovered activity-stability trade-off phenomenon could be attributed to macromolecular crowding on the highly dense surface of the enzyme-immobilized biosilica. Collectively, our system not only facilitates the stability-controllable self-immobilization of enzyme via Si-tag on a diatom biosilica support for the robust, facile, and green construction of stable biocatalysts, but is also a unique model for studying the macromolecular crowding effect on surface-immobilized enzymes.
机译:利用碳酸酐酶(CA),一种催化CO2水合的酶,是ECORIEDLIEDLYLIEDLY和经济有效的碳捕获和利用的强大途径。对于成功的工业应用,应改善Ca的稳定性和可重用性,这需要酶固定化。这里,来自大肠杆菌的核糖体蛋白L2(Si-Tag)用于将Ca固定到硅藻土中,是一种有前途的可再生载体材料。 Si-Tag被重新设计(L2NC)并从海洋细菌氢灭菌汞柱(HMCA)遗传融合到CA。通过Si-Tag介导的强粘合成功地实现了通过简单的混合通过简单混合实现HMCA-L2NC在硅藻生物硅藻中的一步自固定,显示多层吸附,最大负载为1.4wt%。即使在高温条件下,固定化酶也表现出高可重用性和酶泄漏。 HMCA-L2NC的活性与酶负载成反比,而稳定性与酶负载成比例。这种发现的活性稳定性折衷现象可能归因于酶固定化生物硅的高度致密表面上的大分子挤。集体,我们的系统不仅促进了通过Si-Tag在硅藻土中通过Si-Tag的稳定可控的自固定,用于稳定,容易和绿色的稳定生物催化剂的施工,但也是研究大分子挤压效应的独特模型在表面固定化酶。

著录项

相似文献

  • 外文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号