首页> 外文期刊>ACS nano >DNA Bipedal Motor Achieves a Large Number of Steps Due to Operation Using Microfluidics-Based Interface
【24h】

DNA Bipedal Motor Achieves a Large Number of Steps Due to Operation Using Microfluidics-Based Interface

机译:DNA双面电机由于使用基于Microfluidics的界面而达到了大量步骤

获取原文
获取原文并翻译 | 示例
           

摘要

Realization of bioinspired molecular machines that can perform many and diverse operations in response to external chemical commands is a major goal in nanotechnology, but current molecular machines respond to only a few sequential commands. Lack of effective methods for introduction and removal of command compounds and low efficiencies of the reactions involved are major reasons for the limited performance. We introduce here a user interface based on a microfluidics device and single-molecule fluorescence spectroscopy that allows efficient introduction and removal of chemical commands and enables detailed study of the reaction mechanisms involved in the operation of synthetic molecular machines. The microfluidics provided 64 consecutive DNA strand commands to a DNA-based motor system immobilized inside the microfluidics, driving a bipedal walker to perform 32 steps on a DNA origami track. The microfluidics enabled removal of redundant strands, resulting in a 6-fold increase in processivity relative to an identical motor operated without strand removal and significantly more operations than previously reported for user-controlled DNA nanomachines. In the motor operated without strand removal, redundant strands interfere with motor operation and reduce its performance. The microfluidics also enabled computer control of motor direction and speed. Furthermore, analysis of the reaction kinetics and motor performance in the absence of redundant strands, made possible by the microfluidics, enabled accurate modeling of the walker processivity. This enabled identification of dynamic boundaries and provided an explanation, based on the "trap state" mechanism, for why the motor did not perform an even larger number of steps. This understanding is very important for the development of future motors with significantly improved performance. Our universal interface enables two-way communication between user and molecular machine and, relying on concepts similar to that of solid-phase synthesis, removes limitations on the number of external stimuli. This interface, therefore, is an important step toward realization of reliable, processive, reproducible, and useful externally controlled DNA nanomachines.
机译:实现能够对外部化学命令进行许多和多样化操作的生物悬浮的分子机是纳米技术的主要目标,但目前的分子机器仅响应几个顺序命令。缺乏有效的介绍和去除指挥化合物和涉及反应的低效率的方法是绩效有限的主要原因。我们在此引入基于微流体装置和单分子荧光光谱的用户界面,允许有效地引入和除去化学命令,并能够详细研究参与合成分子机的操作的反应机制。将64个连续的DNA链命令提供了64个连续的DNA链命令,其在微流体内部固定的基于DNA的电动机系统,驱动双向步行者在DNA折纸轨道上执行32步。微流体能够去除冗余股线,导致相对于没有链路的相同电动机的处理率增加6倍,并且比以前报道的用户控制的DNA纳米载体显着更多的操作。在没有股线移除的电机中,冗余股线干扰电机运行并降低其性能。微流体还使计算机控制电机方向和速度。此外,在没有冗余股线的情况下,通过微流体使反应动力学和电动机性能分析,使得能够精确建模的步行者处理能力。这使得能够识别动态边界,并基于“陷阱状态”机制提供了解释,因为电动机没有执行甚至更大的步骤。这种理解对于未来的电机的开发非常重要,具有显着提高的性能。我们的通用界面使用户和分子机器之间的双向通信,并且依赖于类似于固相合成的概念,除去对外部刺激数量的限制。因此,该界面是实现可靠,加工,可重复和有用的外部控制DNA纳米载体的重要步骤。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号