...
首页> 外文期刊>ACS nano >Shell-Induced Ostwald Ripening: Simultaneous Structure, Composition, and Morphology Transformations during the Creation of Hollow Iron Oxide Nanocapsules
【24h】

Shell-Induced Ostwald Ripening: Simultaneous Structure, Composition, and Morphology Transformations during the Creation of Hollow Iron Oxide Nanocapsules

机译:壳诱导的骨瓦德成熟:中空氧化铁纳米胶囊中的同时结构,组成和形态转化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The creation of nanomaterials requires simultaneous control of not only crystalline structure and composition but also crystal shape and size, or morphology, which can pose a significant synthetic challenge. Approaches to address this challenge include creating nanocrystals whose morphologies echo their underlying crystal structures, such as the growth of platelets of two-dimensional layered crystal structures, or conversely attempting to decouple the morphology from structure by converting a structure or composition after first creating crystals with a desired morphology. A particularly elegant example of this latter approach involves the topotactic conversion of a nanoparticle from one structure and composition to another, since the orientation relationship between the initial and final product allows the crystallinity and orientation to be maintained throughout the process. Here we report a mechanism for creating hollow nanostructures, illustrated via the decomposition of beta-FeOOH nanorods to nanocapsules of alpha-Fe2O3, gamma-Fe2O3, Fe3O4, and FeO, depending on the reaction conditions, while retaining single-crystallinity and the outer nanorod morphology. Using in situ TEM, we demonstrate that the nanostructured morphology of the starting material allows kinetic trapping of metastable phases with a topotactic relationship to the final thermodynamically stable phase.
机译:纳米材料的产生需要同时控制晶体结构和组合物,而且还可以控制晶体形状和尺寸,或形态,这可能会产生显着的合成挑战。解决这一挑战的方法包括创造纳米晶体,其形态学回应其底层晶体结构,例如二维层状晶体结构的血小板的生长,或者反映通过在首先产生结构或组合物之后通过转换结构或组合物来与结构与结构分离期望的形态。这种后一种方法的一个特别优先的例子涉及从一种结构和组合物到另一个结构和组合物的拓扑转化,因为初始和最终产品之间的取向关系允许在整个过程中保持结晶度和取向。在这里,我们报告了一种用于产生中空纳米结构的机制,通过将β-FeOOH纳米棒分解为α-Fe2O3,γ-Fe2O3,Fe 3 O 4和Feo的纳米封装,这取决于反应条件,同时保持单结晶度和外纳米棒形态学。使用原位TEM,我们证明了起始材料的纳米结构形态允许与最终热力学稳定相的拓扑关系进行动力学俘获。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号